Class | Date | Day | Topic | Reading (Pre-Class) | Notes |
---|---|---|---|---|---|
1 | Jan 17 | Wed | Introduction | Pre-Req material; R and Rstudio Modern Data Science with R sections: 2,3,4,6,7,9 |
HW 0 assigned; Get textbook(s); update software; review pre-req material |
2 | Jan 22 | Mon | R and Tidyverse | R Tidyverse 1-11, 12-14, 16, 20, 25-26, 28 | |
3 | Jan 24 | Wed | Linear Regression with R | ISL 3.1-3.6 | R formula interface |
4 | Jan 29 | Mon | Supervised Learning I | ISL 1, 2.1, 7.1 ESL 1, 2.1-2.4 |
HW 0 Due |
5 | Jan 31 | Wed | Supervised Learning II | ISL 2.2-2.3 ESL 2.5-2.9 |
|
6 | Feb 05 | Mon | Resampling: Bootstrap and Splines | ISL 5.2, 7.2-7.4 ESL 7.11, 5.1-5.3 (optional) Bootstrapping Regression Models |
HW 1 Due |
7 | Feb 07 | Wed | Resampling: Cross-Validation and Model Selection | ISL 5.1 ESL 7.10 ISL Chap 3 (review) |
|
8 | Feb 12 | Mon | Penalized Regression | ISL 6.1-6.2 ESL 3.3-3.4 |
HW 2 Due |
9 | Feb 14 | Wed | Penalized Regression | ISL 6.4-6.5 (optional 6.3) ESL 3.5-3.6 |
|
10 | Feb 19 | Mon | Classification: Probability Modeling | ISL 4.1-4.3 ESL 4.1-4.4 |
HW 3 Due |
11 | Feb 21 | Wed | Classification: Decision Theory | ESL 9.1 | |
12 | Feb 26 | Mon | Support Vector Machines (SVM) | ISL 9.1-9.6 ESL 12.1-12.3 or MMDS 12.3 |
HW 4 Due |
13 | Feb 28 | Wed | Prediction Bias and Calibration | Calibration: the Achilles heel of predictive analytics | |
Mar 04 | Mon | No Class | |||
Mar 06 | Wed | No Class | |||
14 | Mar 11 | Mon | Tree-Based Methods | ISL 8.1, 8.3.1-8.3.2 ESL 9.2 |
HW 5 Due |
15 | Mar 13 | Wed | Tree-Based Methods | ISL 8.2, 8.3.3-8.3.4 ESL 15 |
|
16 | Mar 18 | Mon | Ensembles | ISL 8.2 | HW 6 Due |
17 | Mar 20 | Wed | Boosting | ISL 8.2.3; ESL 10.1-10.9 LogitBoost paper |
|
18 | Mar 25 | Mon | Boosting | ESL 10.10-10.14 XGBoost paper, CatBoost paper, LightGBM |
Taylor Expansion |
19 | Mar 27 | Wed | Review | ||
20 | Apr 01 | Mon | Feature Importance and XAI | Interpretable Machine Learning: Permutation Feature Importance | HW 7 Due |
21 | Apr 03 | Wed | Feature Engineering | ISLR 6.3 | |
22 | Apr 08 | Mon | Density Estimation | IPSUR:
pg. 209-218 (MLE intro) Maximum Likelihood Estimation: pg. 221-223 IPSUR Chap. 5-7 (Random Variable Review, if necessary) |
HW 8 Due |
23 | Apr 10 | Wed | Density Estimation | Silverman 2.1-2.6 | |
24 | Apr 15 | Mon | Generative Classifiers | ISL 4.4-4.5; ESL 6.6 | HW 9 Due |
25 | Apr 17 | Wed | Clustering | Primary: ISL 12.4-12.5; ITDM 7.1; 7.5 Secondary: ESL 14.3.1-14.3.8; 14.3.12; ITDM 7.2-7.3 |
|
26 | Apr 22 | Mon | Clustering | Primary: ESL 8.5.1 Secondary: Gaussian Mixture Models: 11.1-11.3 |
|
27 | Apr 24 | Wed | TBD | ||
28 | Apr 29 | Mon | TBD | HW 10 Due | |
May 07 | Tue | (2pm-5pm) Final Presentations | |||
May 08 | Wed | (midnight) Final Project Due |