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1 Supervised Learning Intro

1.1 Supervised Learning

• In supervised learning, each observation can be partitioned into two sets: the predictor variables and
the outcome variable(s).

– Predictor variables are sometimes called independent/feature variables
– Outcome variables are sometimes called target/labels/response/dependent variables.

• Usually the predictor variables are represented by X and the response variables represented by Y

• The goal in supervised learning is to find the patterns and relationships between the predictors, X , and
the response, Y .

– Usually the goal is to predict the value of Y given X .

• Later in the course we will explore the unsupervised learning topics of density estimation and clustering,
which do not have any outcomes (i.e., no Y ’s).

2 Example Data

Consider some data D = {(Xi, Yi)}n
i=1 with Yi ∈ R, Xi ∈ [0, 1] and n = 100.
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Your Turn #1

The goal is to predict new Y values if we are given the X’s.
• If x = .40, predict Y .
• If x = 0, predict Y .
• If x = .62, predict Y .
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• How should we build a model that will automatically predict Y for any given X?

3 Linear Models

• Linear models refer to a class of models where the output (predicted value) is a linear combination
(weighted sum) of the input variables

f(x; β) = β0 +
p∑

j=1
βjxj

where x = [x1, . . . , xp]T is a vector of features/variables/attributes and Ŷ |x = f(x; β̂) is the predicted
response at X = x

• the coefficients (or weights), β̂ are often selected by minimizing the squared residuals of the training
data (may also be described as ordinary least squares)

– But, there are other, and better, ways to estimate the parameters in linear regression that we will
discuss later in the course. (e.g., Lasso, Ridge, Robust)

3.1 Simple Linear Regression

3.1.1 Model Structure

• single predictor variable x ∈ R
• Prediction function: f(x; β) = β0 + β1x
• Model parameters: β = (β0, β1)

3.1.2 Parameter estimation

• Use training data: Dtrain = {(xi, yi)}n
i=1 to estimate the model paramters

• ordinarly least squares (OLS) uses the weights/coefficients that minimize the SSE loss function over
the training data

β̂ = arg min
β

SSE(β)

• where SSE is the sum of squared errors (also known as residual sum of squares (RSS))

SSE(β) =
n∑
i

(yi − f(xi, β))2

=
n∑
i

(yi − β0 − β1xi)2

=
n∑
i

ϵ̂2
i where ϵ̂i = yi − ŷi is the residual

• The solutions are
β̂0 = ȳ − β1x̄

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2
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• Definitions:
MSE(β) = 1

n
SSE(β)

= 1
n

n∑
i=1

(yi − f(xi; β))2

RMSE =
√

MSE =
√

SSE/
√

n

3.2 OLS Linear Models in R

3.2.1 Estimation with lm()

In R, the function lm() fits an OLS linear model
data_train = tibble(x,y) # create a data frame/tibble
m1 = lm(y~x, data=data_train) # fit simple OLS

The summary() function provides some basic output from the fitted model
summary(m1) # summary of model
#>
#> Call:
#> lm(formula = y ~ x, data = data_train)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -9.229 -1.635 0.019 1.940 6.728
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.478 0.584 11.09 < 2e-16 ***
#> x -7.372 1.058 -6.97 3.7e-10 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.91 on 98 degrees of freedom
#> Multiple R-squared: 0.331, Adjusted R-squared: 0.325
#> F-statistic: 48.6 on 1 and 98 DF, p-value: 3.69e-10

The broom package provides three functions to make it easier to interact with model objects:

• tidy() summarizes information about model components
• glance() reports information about the entire model
• augment() adds information about observations to a dataset

library(broom)
broom::tidy(m1) # model coefficients (as a data frame)
#> # A tibble: 2 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 6.48 0.584 11.1 5.39e-19
#> 2 x -7.37 1.06 -6.97 3.69e-10
broom::glance(m1) # model properties
#> # A tibble: 1 x 12
#> r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.331 0.325 2.91 48.6 3.69e-10 1 -248. 501. 509.
#> # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

https://broom.tidymodels.org/


Supervised Learning (Part I) SYS 6018 | Spring 2025 5/18

• lm() uses the formula interface, which includes the intercept by default.
– Some examples of using formulas as well as getting the underlying X (model/design matrix) can

be found R Formula notes

Tidymodels

Using the tidymodels framework the linear model can be implemented:
library(tidymodels)
linear_reg() %>%

fit(y~x, data_train)
#> parsnip model object
#>
#>
#> Call:
#> stats::lm(formula = y ~ x, data = data)
#>
#> Coefficients:
#> (Intercept) x
#> 6.48 -7.37

3.2.2 Prediction with predict()

The function predict() is used to get the predicted values.
xseq = seq(0, 1, length=200) # sequence of equally spaced values from 0 to 1
xeval = tibble(x = xseq) # make into a tibble object
yhat1 = predict(m1, xeval) # vector of yhat's (predictions)

broom::augment()

Alternatively, the augment() function from the broom package will make predictions.
broom::augment(m1, newdata = tibble(x = seq(0, 1, length=200)) )
#> # A tibble: 200 x 2
#> x .fitted
#> <dbl> <dbl>
#> 1 0 6.48
#> 2 0.00503 6.44
#> 3 0.0101 6.40
#> 4 0.0151 6.37
#> 5 0.0201 6.33
#> 6 0.0251 6.29
#> # i 194 more rows
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3.2.3 Questions
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Your Turn #2

1. How did we do? If Xnew is close to 0, or close to 0.4, or close to .62?
2. How to make it better?
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4 Polynomial inputs

• In the simple linear regression model, we had 2 parameters that we needed to estimation, β0 and β1.
Thus, the model flexibility/complexity is minimal.

– The only thing simpler is an intercept only model.

• But the data appears to have a more complex structure than linear.

• A parametric approach to add flexibility is to incorporate polynomial terms into the model.

– A quadratic model is f(x; β) = β0 + β1x + β2x2

4.1 Estimation

• OLS uses the weights/coefficients that minimize the SSE loss function over the training data

β̂ = arg min
β

SSE(β) Note: β in this problem is a vector

= arg min
β

n∑
i=1

(yi − f(xi; β))2

= arg min
β

n∑
i=1

(yi − β0 − β1xi − β2x2
i )2

4.1.1 Matrix notation

• Model
f(x; β) = xTβ

x =

 1
x
x2

 β =

β0
β1
β2


Your Turn #3 : Matrix Notation

Solve for β̂ using matrix notation. Matrix Cheatsheet

Y =


Y1
Y2
...

Yn

 X =


1 X1 X2

1
1 X2 X2

2
...

...
...

1 Xn X2
n

 β =

β0
β1
β2



https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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4.1.2 R implementation

In R, the function poly() is a convenient way to get polynomial terms
m2 = lm(y~poly(x, degree=2), data=data_train)
yhat2 = predict(m2, xeval)

Tidymodels

The tidymodel approach separates all preprocessing steps (e.g., polynomial expansion) from the model specifica-
tion. It does this through recipes. The preprocessing and model specification is combined in a workflow. It
looks like this for polynomial regression:
workflow(

spec = linear_reg(),
preprocessor =

recipe(y~x, data = data_train) %>%
step_poly(x, degree = 2)

) %>%
fit(data_train)
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Your Turn #4

1. How did we do? If Xnew is close to 0, or close to 0.4, or close to .62?
2. But does the quadratic model fit better overall?
3. What is the complexity/flexibility of the quadratic model?

4.2 Performance Comparison (on Training Data)
Comparing the two models (according to MSE), the quadratic model does much better!

degree MSE # pars

1 8.29 2
2 5.58 3
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As my kids always reason, “if a little is good, than a lot must be better”. So why not try more complex models
by increasing the polynomial degree.

• Polynomial of degree d

fpoly(x; β, d) = β0 +
d∑

j=1
βjxj

degree MSE # pars

1 8.29 2
2 5.58 3
3 4.28 4
5 4.10 6

10 3.65 11
20 3.16 21

And its always good to observe the plot
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• For degree=20, the behavior at the end points are a bit erratic.

• Using a higher degree would further reduce the MSE, but the fitted curve would be more “complex”
and may not be as good for new data.

Model and Tuning parameters

• The β = (β0, β1, . . . , βd) are the model parameters.

• The polynomial degree d is the tuning parameter.
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5 k-nearest neighbor models

• The k-NN method is a non-parametric local method, meaning that to make a prediction ŷ|x, it only
uses the training data in the vicinity of x.

– contrast with OLS linear regression, which uses all x’s to get prediction.

• The model is simple to describe. It finds the k most similar/closest points in the training data and uses
their average.

fknn(x; k) = 1
k

∑
i:xi∈Nk(x)

yi

= Avg(yi | xi ∈ Nk(x))

– Nk(x) are the set of k nearest neighbors to x
– only the k closest y’s are used to generate a prediction
– it is a simple mean of the k nearest observations

Your Turn #5

What is the estimate fknn(x; k = n)?

5.0.1 Example

Let’s zoom in on the region around x = 0.4
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x y k D f̂knn(x; k)

0.397 6.710 1 0.003 6.710
0.415 5.763 2 0.015 6.237
0.418 3.819 3 0.018 5.431
0.379 4.705 4 0.021 5.249
0.378 5.628 5 0.022 5.325

0.369 2.333 6 0.031 4.826
0.349 4.994 7 0.051 4.850

5.0.2 Notes about knn

• One computational drawback of knn methods is that all the training data must be stored in order to
make predictions.

– For very large training data, you may need to sample (or use prototypes/clusters)
– At prediction time, the nearest neighbors for the new data needs to be computed. This can be

computationally costly.

• The flexibility of a knn model increases as k decreases.

• The least complex model, which is a constant, occurs when k = n

• The most complex model when k = 1

• The effective degrees of freedom or edf for a knn model is n/k

– this is a measure of the model flexibility/complexity. It is approximately the number of parameters
that are estimated in the model (to allow comparison with parametric models)

There are some additional considerations for the usual case when the feature space is multidimensional:
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−10 0 10
X1

X
2

class

Class1

Class2

• A suitable distance measure (e.g. Euclidean) must be chosen.
– And predictors are often scaled (same sd or range) so one variable doesn’t dominate the distance

calculation
• Because the distance to neighbors grows exponentially with increased dimensionality/features, the

curse of dimensionality is often referenced with respect to knn.
– This means that in high dimensions most neighbors are not very close and the method becomes

less local
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5.1 knn in action

5.1.1 FNN package

In R, the function knn.reg() from the FNN package will fit a knn regression model. Here is a k = 20
nearest neighbor model
library(FNN) # library() loads the package. Access to knn.reg()
knn_20 = knn.reg(
train = select(data_train, x),
test = xeval,
y = data_train$y,
k=20)

gg_example +
geom_line(data=tibble(x=xseq, y=knn_20$pred)) +
ggtitle("FNN k=20")
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5.1.2 kknn package

The kknn package will also implement k nearest neighbors
library(kknn)
kknn_20 = kknn(y~x,

train = data_train,
test = xeval,
k = 20,
kernel = "rect")

# Note: the knnn package allows for weighted nearest neighbor. The `kernel`
# argument controls the weighting scheme. "rect" is equivalent to
# unweighted knn.

gg_example +
geom_line(data = xeval %>% mutate(y=kknn_20$fitted.values)) +
ggtitle("kknn k=20")



Supervised Learning (Part I) SYS 6018 | Spring 2025 14/18

−4

−2

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

y

kknn k=20

5.1.3 Performance of the knn models (on training data)
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10 3.86 10

5 3.16 20
2 1.84 50
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6 Predictive Model Comparison (or how to choose the best model)

6.1 Predictive Model Evaluation

Our goal is prediction, so we should evaluate the models on their predictive performance.

• We need to use hold-out data (i.e., data not used to fit the model) to evaluate how well our models do in
prediction

• Call these data test data Dtest = {(Xi, Yi)}M
i=1

– Important: the test data must come from the same distribution as the training data
– Or Ptest(X, Y ) = Ptrain(X, Y )
– both Y and X from same distribution

• Later in the course we will cover ways to do this when we only have training data (e.g., cross-validation)
• but for today, we have an unlimited amount of test data at our disposal (since we know how the data

were generated)

6.2 Statistical Decision Theory

• In a prediction context, we want a point estimate for the value of an unobserved r.v. Y ∈ R given an
input feature X ∈ R.

• Let f(X) be the prediction of Y given X .

• Define a loss function L(Y, f(X)) that indicates how bad it is if we estimate the value Y by f(X)

– E.g. Y is the number of customers complaints in a call center and X is the day of week
– If we guess f(X) = 500, but there are really Y = 2000, how bad would that be?

• Two common loss functions are squared error and absolute error

Lsq(Y, f(X)) = (Y − f(X))2

Labs(Y, f(X)) = |Y − f(X)|

0
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−2 −1 0 1 2
Y − f(X)

lo
ss

metric

Absolute Error

Squared Error

• The best model is the one that minimizes the expected loss or Risk or Expected Prediction Error (EPE)

Risk = EPE = E[loss]
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• For squared error, the risk for using the model f is:

R(f) = EXY [L(Y, f(X))]
= EXY [(Y − f(X))2]

where the expectation is w.r.t. the test values of X, Y .

Mean Squared Error (MSE)

Under squared error loss, the risk/EPE is also known as the mean squared error (MSE)

• To simplify a bit, let’s examine the EPE of model f at a given fixed input X = x. This removes the
uncertainty in X , so we only have uncertainty coming from Y .

EPEx(f) = E[L(Y, f(x)) | X = x]
= E[(Y − f(x))2 | X = x] for squared error loss

where the expectation is taken with respect to Y |X = x

• The best prediction f∗(x), given X = x, is the value that minimizes the risk

f∗(x) = arg min
c

EPEx(c)

= arg min
c

E[(Y − c)2 | X = x]

Your Turn #6

What is the optimal prediction at X = x under the squared error loss?
• I.e., find f∗(x).



Supervised Learning (Part I) SYS 6018 | Spring 2025 17/18

6.2.1 Squared Error Loss Functions

• Conclusion: If quality of prediction is measured by squared error, then the best predictor is the
(conditional) expected value f∗(x) = E[Y |X = x].

– And the minimum Risk/MSE is EPEx(f∗) = V[Y|X = x]
• Summary: Under squared error loss the Risk (at input x) is

EPEx(f) = EY [L(Y, f(X)) | X = x]
= EY [(Y − f(x))2 | X = x] using squared error loss

= V[Y | X = x] + (EY [Y | X = x] − f(x))2

= Irreducible Variance + model squared error

6.2.2 kNN and Polynomial Regression

• The kNN model estimates the conditional expectation by using the data in a local region around x

f̂knn(x; k) = Ave(yi | xi ∈ Nk(x))

This assumes that the true f(x) can be well approximated by a locally constant function

• Polynomial (linear) regression, on the other hand, assumes that the true f(x) is well approximated by a
globally polynomial function

f̂poly(x; d) = β0 +
d∑

j=1
βjxj

6.2.3 Empirical Risk

• The actual Risk/EPE is based on the expected error from test data (out-of-sample), or data that was not
used to estimate f̂

EPE(f) = EXY [L(Y, f(X))]
= EXY [(Y − f(X))2] for squared error loss

where X, Y are from Pr(X, Y ) (i.e., test data)

• But is it a bad idea to choose the best model according to empirical risk or training error?

Train error(f) = 1
n

n∑
i=1

L(yi, f(xi))

= 1
n

n∑
i=1

(yi − f(xi))2 for squared error loss
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6.3 Choose the best predictive model

Your Turn #7

Which model will you choose?
You can access the survey from Best Predictive Model

−4

−2

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

y

degree

1

2

3

5

10

20

Polynomial Models

−4

−2

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

y

k

2

5

10

50

100

kNN Models

Polynomial
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1 8.29 2
2 5.58 3
3 4.28 4
5 4.10 6
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kNN
k MSE edf

50 6.87 2.00
30 5.06 3.33
20 4.18 5.00
15 4.13 6.67
10 3.86 10.00

5 3.16 20.00

https://virginia.az1.qualtrics.com/jfe/form/SV_8AMgwrepVOZW73g
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