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1 Feature Engineering

Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell
Johnson:

“. . . we are sometimes frustrated to find that the best models have less-than-anticipated, less-than-
useful useful predictive performance. This lack of performance may be due to a simple to explain,
but difficult to pinpoint, cause: relevant predictors that were collected are represented in a
way that models have trouble achieving good performance.

Key relationships that are not directly available as predictors may be between the response and:

• a transformation of a predictor,
• an interaction of two or more predictors such as a product or ratio,
• a functional relationship among predictors, or
• an equivalent re-representation of a predictor.

Adjusting and reworking the predictors to enable models to better uncover predictor-response
relationships has been termed feature engineering.”

2 Predictive Exploratory Data Analysis (P-EDA)

Most data scientists will develop their own favorite routines for exploring new data.

• Predictors/Features:
– Visualize Distribution (e.g., kde, histograms)
– Detect Outliers (e.g., quantiles, boxplots)
– Explore Missingness (e.g., how many, what proportion are missing)
– Low Entropy: few unique values, near-zero variance

• Multiple Predictors/Features:
– Visualize Joint Distributions (e.g., pairs plots)
– Detect highly correlated (redundant) features
– Principal Components Analysis (PCA)
– Clustering: find homogeneous groups of observations

• Outcome(s):
– Same as for Predictors/Features
– Investigate missing or unusual outcomes

• Predictor vs. Outcome:
– Simple models E[Y | Xj ] using feature Xj as the only predictor
– These can help reveal non-linear relationships.
– Can help reveal when missing data are informative.

Outcome Leakage

Be careful not to “learn” too much before modeling. Hold out small sample for P-EDA.

2.1 EDA Code

Here are a few examples of packages that help with understanding data. The output is generally designed for
html, so it may not look great in this pdf.

http://www.feat.engineering/
http://www.feat.engineering/
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Table 1: Data summary

Name penguins
Number of rows 344
Number of columns 8
_______________________
Column type frequency:
factor 3
numeric 5
________________________
Group variables None

library(palmerpenguins)
penguins
#> # A tibble: 344 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgersen 39.1 18.7 181 3750
#> 2 Adelie Torgersen 39.5 17.4 186 3800
#> 3 Adelie Torgersen 40.3 18 195 3250
#> 4 Adelie Torgersen NA NA NA NA
#> 5 Adelie Torgersen 36.7 19.3 193 3450
#> 6 Adelie Torgersen 39.3 20.6 190 3650
#> # i 338 more rows
#> # i 2 more variables: sex <fct>, year <int>

2.1.1 skimr

skimr R package https://docs.ropensci.org/skimr/

• Note: the main function is skim(), but that produces sparklines that don’t render correctly in pdf,
therefore I’m using skim_without_charts().

library(skimr)
skim_without_charts(penguins)

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
species 0 1.00 FALSE 3 Ade: 152, Gen: 124, Chi: 68
island 0 1.00 FALSE 3 Bis: 168, Dre: 124, Tor: 52
sex 11 0.97 FALSE 2 mal: 168, fem: 165

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100
bill_length_mm 2 0.99 43.92 5.46 32.1 39.23 44.45 48.5 59.6
bill_depth_mm 2 0.99 17.15 1.97 13.1 15.60 17.30 18.7 21.5
flipper_length_mm 2 0.99 200.92 14.06 172.0 190.00 197.00 213.0 231.0
body_mass_g 2 0.99 4201.75 801.95 2700.0 3550.00 4050.00 4750.0 6300.0
year 0 1.00 2008.03 0.82 2007.0 2007.00 2008.00 2009.0 2009.0

penguins %>%
group_by(species) %>%
skim_without_charts()

https://docs.ropensci.org/skimr/
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Table 2: Data summary

Name Piped data
Number of rows 344
Number of columns 8
_______________________
Column type frequency:
factor 2
numeric 5
________________________
Group variables species

Variable type: factor

skim_variable species n_missing complete_rate ordered n_unique top_counts
island Adelie 0 1.00 FALSE 3 Dre: 56, Tor: 52, Bis: 44
island Chinstrap 0 1.00 FALSE 1 Dre: 68, Bis: 0, Tor: 0
island Gentoo 0 1.00 FALSE 1 Bis: 124, Dre: 0, Tor: 0
sex Adelie 6 0.96 FALSE 2 fem: 73, mal: 73
sex Chinstrap 0 1.00 FALSE 2 fem: 34, mal: 34
sex Gentoo 5 0.96 FALSE 2 mal: 61, fem: 58

Variable type: numeric

skim_variable species n_missing complete_rate mean sd p0 p25 p50 p75 p100
bill_length_mm Adelie 1 0.99 38.79 2.66 32.1 36.75 38.80 40.75 46.0
bill_length_mm Chinstrap 0 1.00 48.83 3.34 40.9 46.35 49.55 51.08 58.0
bill_length_mm Gentoo 1 0.99 47.50 3.08 40.9 45.30 47.30 49.55 59.6
bill_depth_mm Adelie 1 0.99 18.35 1.22 15.5 17.50 18.40 19.00 21.5
bill_depth_mm Chinstrap 0 1.00 18.42 1.14 16.4 17.50 18.45 19.40 20.8
bill_depth_mm Gentoo 1 0.99 14.98 0.98 13.1 14.20 15.00 15.70 17.3
flipper_length_mm Adelie 1 0.99 189.95 6.54 172.0 186.00 190.00 195.00 210.0
flipper_length_mm Chinstrap 0 1.00 195.82 7.13 178.0 191.00 196.00 201.00 212.0
flipper_length_mm Gentoo 1 0.99 217.19 6.48 203.0 212.00 216.00 221.00 231.0
body_mass_g Adelie 1 0.99 3700.66 458.57 2850.0 3350.00 3700.00 4000.00 4775.0
body_mass_g Chinstrap 0 1.00 3733.09 384.34 2700.0 3487.50 3700.00 3950.00 4800.0
body_mass_g Gentoo 1 0.99 5076.02 504.12 3950.0 4700.00 5000.00 5500.00 6300.0
year Adelie 0 1.00 2008.01 0.82 2007.0 2007.00 2008.00 2009.00 2009.0
year Chinstrap 0 1.00 2007.97 0.86 2007.0 2007.00 2008.00 2009.00 2009.0
year Gentoo 0 1.00 2008.08 0.79 2007.0 2007.00 2008.00 2009.00 2009.0

2.1.2 DataExplorer

The DataExplorer R package https://boxuancui.github.io/DataExplorer/articles/dataexplorer-intro.html
library(DataExplorer)
penguins %>% introduce() %>%
pivot_longer(everything())

#> # A tibble: 9 x 2
#> name value
#> <chr> <dbl>
#> 1 rows 344
#> 2 columns 8
#> 3 discrete_columns 3
#> 4 continuous_columns 5

https://boxuancui.github.io/DataExplorer/articles/dataexplorer-intro.html
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#> 5 all_missing_columns 0
#> 6 total_missing_values 19
#> # i 3 more rows

penguins %>% plot_intro()

37.50%

62.50%

0.00%

96.80%

0.69%Missing Observations

Complete Rows

All Missing Columns

Continuous Columns

Discrete Columns

0% 25% 50% 75% 100%
Value

M
et

ric
s

Dimension

column

observation

row

Memory Usage: 17.6 Kb
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penguins %>% plot_bar()
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penguins %>% plot_histogram()
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2.1.3 ggplot2

library(palmerpenguins)
penguins %>%
ggplot(aes(bill_length_mm, species)) +
geom_boxplot() +
geom_point()
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penguins %>%
count(sex, species) %>%
group_by(sex) %>%
mutate(p = n / sum(n)) %>%
ggplot(aes(sex, species)) +
geom_label(aes(size = n, label = scales::percent(p, accuracy = .1)))
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3 Feature Transformations

In this section, we are only dealing with transforming individual features. Transforming many features
together (e.g., PCA) will be addressed in the dimension reduction/expansion section.

Also, keep in mind that we can transform a predictor variable and keep both the new and original features in
the model.

3.1 Categorical Features

3.1.1 Nominal (unordered)

• For nominal (unordered) features, binary (dummy) encoding is common. This creates one binary
column per level (one-hot) or chooses one level to be the baseline and creates 1-# levels new columns
(this is sometimes called dummy encoding).

– The one-hot encoding may cause computational issues if the model matrix is overdetermined
(e.g., (XTX)−1 isn’t invertible). This is not problem for elastic net models.

• Dummy encoding creates additional predictors (degrees of freedom) which can inflate the variance
(even with lasso/enet).

– Grouping the rare levels into an “Other” category can help, but at the risk of masking real effects
• Another problem occurs when a new level appears only the test data. A model won’t know what

prediction to make for the unseen value.
– This comes up for rare levels in resampling (cross-validation)

• Supervised approaches can also be used. Consider encoding a level with the mean outcome for that
level.

– Use out-of-sample data for encoding to prevent leakage
– see CatBoost for an example
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The data have a nominal feature and numeric outcome. Here’s a sample of 10 rows:

nominal outcome mean_encoding

D 1.19 1.36
C 1.03 0.20
B 0.89 2.96
C -1.02 0.20
C 2.38 0.20
D -1.32 1.36
B 2.37 2.96
C -0.51 0.20
B 6.20 2.96
D 2.41 1.36

Overall, these are the group means:

nominal mu

A 1.92
B 2.96
C 0.20
D 1.36

which is where the mean_encoding values come from.

• Some tree-based models can handle categorical predictors without need for dummy encoding. You’ll
recall this often leads to too many splits on the categorical predictors. But for some data this works
better (http://www.feat.engineering/categorical-trees.html).

3.1.2 Ordinal

• Some categorical features may be ordered but not necessarily on an interval scale (e.g., Likert is interval
scale).

• One option is to encode the values onto the integers (e.g., worst = 1, best = 5) and treat as numeric.

– For models that can include non-linear components (e.g., trees), this can work well
– For linear models, polynomial contrasts can be used to capture non-linear effects. Or spline

expansions.

• Another option is to ignore the ordering and treat as nominal (e.g., and dummy encode)

– But this can contribute to overfitting (high variance) since extra edf needed to capture the ordered
effects (if it exists)

3.2 Numeric Features

• Standard mathematical operations (log, sqrt, exp, inverse)

• Power Transformations like Box-Cox, Yeo-Johnson. Commonly used to transform data to more
normal/Gaussian empirical distribution.

• Box-Cox transformation works for positive data and has parameter λ

x′ =
{

(xλ − 1)/λ if λ 6= 0
log(x) if λ = 0

http://www.feat.engineering/categorical-trees.html
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• Can discretize (or bin) the numeric values which creates ordinal values. Then use approaches for
handling ordinal predictors.
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Reminders

• OLS will work best when predictors are linearly related to the outcome
• In OLS, the residuals should have symmetric distribution
• In general, predictors don’t need to be normally distributed

– But LDA/QDA will work best when they are conditionally Gaussian

3.2.1 Scaling

• Reminder: all scaling should be done on training data and applied to test data to avoid leakage.

• For numerical reasons (e.g., gradient descent), it may help to center predictors for fitting some models.

a. Divide by standard deviation (after centering; z-score)
• This puts all features in same units: standard deviations

x′ = x− µ̂x
σ̂x

= x

σ̂x
− µ̂x
σ̂x

b. Range or max-min scaling:

x′ = x−min
max−min

• Can be extremely influenced by outliers
• Normalizing is preferred to min-max scaling in most cases unless numerical stability issues with

outliers.
c. Rank Scaling. Replace original values by their rank or sample quantiles

x′ = rank of x
n

= # obs ≤ x
n

• Trees use this implicitly for splitting
• Robust against outliers (but changes relationship between feature and outcome)
• Can take further step to remap quantiles to make any distribution (inverse CDF)

4 Feature Selection

Note

• Feature Selection: only use a subset of available/collected predictors
– E.g., best subsets, lasso penalty

• Dimension Reduction: reduce the number of predictors/parameters used by a model
– E.g., principal component regression (PCR)

See the book chapter Feature Engineering: Selection for more details and ideas.

Goals:

1. Cost and time savings: Collecting predictors can be expensive

2. Reduce model variance: removing predictors lowers model variance

3. Interpretation: easier to understand model with fewer relevant predictors

http://www.feat.engineering/selection.html
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Three main approaches:

1. Intrinsic
2. Wrappers
3. Filters

4.1 Intrinsic: Feature Selectors

Intrinsic feature selection methods are build into the model/algorithm. Examples include trees (may never
split on a feature) and lasso (coefficients may be set to 0).

4.2 Wrappers: Feature Selectors

Wrapper methods for feature selection attempt to find the best subset of features for a particular model. They
can sometimes perform better (e.g., Boruta) than intrinsic methods, but they will involve extra computation.

Examples include fully enumerated best subsets, stepwise, and evolutionary optimization algorithms like
genetic algorithms. Can consider this a binary integer programming optimization. An example of False
Selection Rate (FSR) feature selection designed for random forest is called Boruta (covered in Feature I
mportance.

4.3 Filters: Feature Selectors

Filter methods are the quickest, but not usually the best. Basically, filter methods do feature selection first
before any modeling is done. For example, run p simple linear regression models (one for each predictor)
and keep the features with significant coefficients for further modeling.

Although they are sometimes claimed to be model-free, most (all?) filter methods do (implicitly) have a
model they are using to decide on the relevant predictors. There is no guarantee that features selected by the
filter are appropriate for the final model.

Also, need to be very careful with data leakage; using a supervised filter method before resampling will give
false sense of model performance.

But unsupervised filtering (e.g., removing stop words, almost zero-variance predictors, removing duplicate or
highly correlated predictors) can prevent inflated variance.

5 Dimension Reduction

Note

• Feature Selection: only use a subset of available/collected predictors
– E.g., best subsets, lasso penalty

• Dimension Reduction: reduce the number of predictors/parameters used by the model
– E.g., principal component regression (PCR)
– The predictors used by the model may not be the same ones that were collected (i.e., they are

transformed).

Basically, dimension reduction methods are based on transforming the raw data (e.g., PCA) and then using a
subset of the transformed predictions.

https://www4.stat.ncsu.edu/~boos/papers/wbs2582.pdf
https://www4.stat.ncsu.edu/~boos/papers/wbs2582.pdf


Feature Engineering SYS 6018 | Spring 2025 13/25

Principal Component Regression (PCR) and Partial Least Squares (PLS) are classic examples of dimension
reduction.

• These don’t actually remove predictors since using linear combination. So you can gain on reduced
model variance, but don’t get easier interpretation and still need to collect all input predictors.

5.1 Linear Regression (OLS)

The standard generic form for a linear regression model is

Y = β0 + β1X1 + β2X2 + . . . ,+βpXp + ε

• Y is the outcome variable
• X1, X2, . . . , Xp are the p explanatory, independent, or predictor variables
• the greek letter ε (epsilon) is the random error variable

Linear Model Diagram

5.2 Estimation

• The weights/coefficients (β) are the model parameters

• OLS uses the weights/coefficients that minimize the RSS loss function over the training data

β̂ = arg min
β

RSS(β) Note: β is a vector

= arg min
β

n∑
i=1

(yi − f(xi;β))2

= arg min
β

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 + . . .+ βpxip)2

OLS equivalently minimizes the MSE since MSE = RSS/n.

5.2.1 Matrix notation

f(x;β) = xTβ



Feature Engineering SYS 6018 | Spring 2025 14/25

Y =


Y1
Y2
...
Yn

 X =


1 X11 X12 X13 . . . X1p

1 X21 X22 X23 . . . X2p

...
...

...
...

. . .
...

1 Xn1 Xn2 Xn3 . . . Xnp

 β =


β0
β1
...
βp


RSS(β) = (Y −Xβ)T(Y −Xβ)

∂RSS(β)
∂β

= 2XT(Y −Xβ)

=⇒ XTY = XTXβ

=⇒ β̂ = (XTX)−1XTY

5.3 Some Problems with least squares estimates
There are a few problems with using least squares estimation (OLS) to estimate the regression parameters (coefficients)

• Prediction Accuracy
– the least squares estimates in high dimensional data may have low bias but can suffer from large variance.
– Prediction accuracy can sometimes be improved by shrinking or setting some coefficients to zero.
– By doing so we sacrifice a little bit of bias to reduce the variance of the predicted values, and hence may

improve the overall prediction accuracy.
– Some predictors may not have any predictive value and only increase noise

• Interpretation: With a large number of predictors, we often would like to determine a smaller subset that exhibit
the strongest effects. In order to get the “big picture”, we are willing to sacrifice some of the small details

– When p > n least squares won’t work at all

5.4 Improving Least squares
We will examine 3 standard approaches to improve on least squares estimates

1. Subset Selection
• Only use a subset of predictors, but estimate with OLS
• Examples: best subsets, forward step-wise

2. Shrinkage/Penalized/Regularized Regression
• Instead of an “all or nothing” approach, shrinkage methods force the coefficients closer toward 0.
• Examples: ridge, lasso, elastic net

3. Dimension Reduction with Derived Inputs
• Use a subset of linearly transformed predictors
• Examples: PCA, PLS

All three methods introduce some additional bias in order to reduce variance and hopefully improve prediction.
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5.5 Derived Linear Features
Instead of using the raw features as predictors, it can sometimes be helpful to use derived features (e.g., new features as
transformations of the raw features).

• X is the (n× p) raw predictor matrix
– p predictors

• Z is the (n× r) derived predictor matrix
– r predictors
– r could be less than (dimension reduction), equal to, or greater than p (feature expansion)

• We saw feature expansion (i.e., basis expansion) when we used splines and polynomials to allow non-linear
relationship between outcome and single predictor

• Today’s material is more focused on dimension reduction (r < p) as a way to introduce some bias to reduce
variance

– We traded bias for reduced variance in penalized regression (e.g., ridge, lasso, elasticnet)

5.5.1 Linear Transformations

• Let Z = XA be the (n× r) transformed model matrix
– X is the (n× p) original features
– A is the (p× r) linear transformation matrix
– Am is the mth column of A
– ajm is the (j,m) element of A
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Z = XA

Zm = XAm

=
p∑
j=1

Xjajm

Zim =
p∑
j=1

Xijajm

5.5.2 OLS with derived feature model

• Once we have the new feature matrix Z, we can estimate parameters like usual. For example, with
OLS:

θ̂ = (ZTZ)−1ZTY

• Or with ridge regression

θ̂ = (ZTZ + λIp)−1ZTY

This gives predictions for raw input x:

ŷ(x) = θ̂0 +
r∑

m=1
Zm(x)θ̂m

Plugging in Zm(x) =
∑p
j=1 xjajm:
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Estimated Derived Beta Coefficients

5.5.3 Dimension Reduction vs. Feature Selection

If r < p, then fewer model parameters need to be estimated. This is called dimension reduction since we
have less parameters to estimate.

• Hence, edf is decreased (lower variance, higher bias)

However, because we still use all original features we haven’t actually done feature selection, so all raw
features must still be collected.
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6 Principal Component Regression (PCR)
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X1 X2

X1 10.50 -10.84
X2 -10.84 16.80
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Variance-Covariance Matrix of Principal Component projections:

PC1 PC2

PC1 24.94 0.00
PC2 0.00 2.36
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6.1 Eigen Decomposition (Spectral Analysis)

6.2 Principal Component Analysis (PCA)

6.3 Dimension Reduction with PCR
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7 Singular Value Decomposition (SVD)

8 PCA with SVD



Feature Engineering SYS 6018 | Spring 2025 24/25



Feature Engineering SYS 6018 | Spring 2025 25/25

9 Ridge Regression with SVD

10 Comparison
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