Publications


1. Endogenous and exogenous effects in self-exciting process models of terrorist activity. Statistica Neerlandica, 79(1): e12347, 2025. (Ruggeri F., Porter M.D., and White G.) [PDF]
2. Guest editorial: Forecasting for social good. International Journal of Forecasting, 41(1): 1-2, 2025. (Rostami-Tabar B., Pinson P., and Porter M.D.) [PDF]
3. Contextual Embeddings in Sociological Research: Expanding the Analysis of Sentiment and Social Dynamics. Sociological Methodology, 55},: 25–58, 2025. (Mostafavi M., Porter M.D., and Robinson D.T.) [PDF]
4. Time of week intensity estimation from partly interval censored data with applications to police patrol planning. Journal of Applied Statistics, : 1–19, 2024. (Tian J. and Porter M.D.) [PDF]
5. Using Machine Learning to Assess the Predictive Power of Donor Characteristics in Pediatric Heart Transplant Outcomes. The Journal of Heart and Lung Transplantation, 43(4): S622, 2024. (Porter M., Sharff J., Dixon R., Haregu F., and McCulloch M.) [PDF]
6. AI in Motion. Civil Engineering Magazine, 94(6): 60-69, 2024. (Pennetti C.A. and Porter M.D.) [PDF]
7. Pediatric donor heart acceptance practices in the United States: What is really being considered?. Pediatric Transplantation, 28(1): e14649, 2024. (McCulloch M., Alonzi L., White S., Haregu F., and Porter M.) [PDF]
8. Pediatric donor heart utilization variability among organ procurement organizations. Pediatric Transplantation, 28(3): e14747, 2024. (Haregu F., Dixon R.J., Porter M., and McCulloch M.) [PDF]
9. Machine Learning for Predicting Waitlist Survival in Pediatric Patients Awaiting Heart Transplantation. The Journal of Heart and Lung Transplantation, 43(4): S621–S622, 2024. (Haregu F., Dixon R., Porter M., Scharff J., and McCulloch M.) [PDF]
10. The Utility of Machine Learning Applied to Military Assessment and Selection. Military Operations Research, 29(2): 53–94, 2024. (Deverill H., Scherer W., Porter M., and Stam A.) [PDF]
11. Deep-Learning Based Probabilistic Forecasting Framework for Censored Data. 23rd IEEE International Conference on Machine Learning and Applications (ICMLA), 2024. (Tian J. and Porter M.D.)
12. Forecasting Breakthroughs: Identifying Future Leaders in the Semiconductor Industry. 2024 Systems and Information Engineering Design Symposium (SIEDS), 425–430, 2024. (Rogers A., Dibsie C., Kuzneski E., Underwood D., Brozey R., Sullivan L., Robinson D., and Porter M.D.) [PDF]
13. Sequential LLM Framework for Fashion Recommendation. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 1276–1285, 2024. (Liu H., Tang X., Chen T., Liu J., Indu I., Zou H.P., Dai P., Galan R.F., Porter M.D., Jia D., Zhang N., and Xiong L.) [PDF]
14. Reevaluating Data Partitioning for Emotion Detection in EmoWOZ. arXiv preprint arXiv:2303.13364, : 2023. (Mostafavi M. and Porter M.D.) [PDF]
15. Quantifying the Influence of User Behaviors on the Dissemination of Fake News on Twitter with Multivariate Hawkes Processes. arXiv preprint arXiv:2308.13927, : 2023. (Jiang Y. and Porter M.D.) [PDF]
16. Effect of Practice Variation Amongst Organ Procurement Organizations on Pediatric Donor Heart Utilization. The Journal of Heart and Lung Transplantation, 42(4): S446–S447, 2023. (Haregu F., Porter M., Dixon J., and McCulloch M.) [PDF]
17. The intersection of video capsule endoscopy and artificial intelligence: addressing unique challenges using machine learning. arXiv preprint arXiv:2308.13035, : 2023. (Guleria S., Schwartz B., Sharma Y., Fernandes P., Jablonski J., Adewole S., Srivastava S., Rhoads F., Porter M., Yeghyayan M., and NA o.) [PDF]
18. Systems Analysis of Bias and Risk in AI-Enabled Medical Diagnosis. 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 1800–1807, 2023. (Moghadasi N., Piran M., Baek S., Valdez R.S., Porter M.D., Johnson D., and Lambert J.H.) [PDF]
19. Changing presidential approval: Detecting and understanding change points in interval censored polling data. Stat, 11(1): e463, 2022. (Tian J. and Porter M.D.) [PDF]
20. Guest Editorial: Forecasting for social good. International Journal of Forecasting, 38(3): 1173–1174, 2022. (Rostami-Tabar B., Hong T., and Porter M.D.)
21. Forecasting for social good. International Journal of Forecasting, 38(3): 1245–1257, 2022. (Rostami-Tabar B., Ali M.M., Hong T., Hyndman R.J., Porter M.D., and Syntetos A.) [PDF]
22. Learning affective meanings that derives the social behavior using Bidirectional Encoder Representations from Transformers. arXiv preprint arXiv:2202.00065, : 2022. (Mostafavi M., Porter M.D., and Robinson D.T.) [PDF]
23. Assessing the Relationship Between Pediatric Donors’ Terminal Hospitalizations and Heart Acceptance Practices. The Journal of Heart and Lung Transplantation, 41(4): S508, 2022. (McCulloch M., Liu I., Alonzi L., White S., and Porter M.)
24. Building-Level Wastewater Surveillance for SARS-CoV-2 in Occupied University Dormitories as an Outbreak Forecasting Tool One Year Case Study. ACS ES&T Water, 2(11): 2094–2104, 2022. (Kotay S.M., Tanabe K.O., Colosi L.M., Poulter M.D., Barry K.E., Holstege C.P., Mathers A.J., and Porter M.D.) [PDF]
25. Simulating Fake News Dissemination on Twitter with Multivariate Hawkes Processes. 2022 IEEE International Conference on Big Data (Big Data), 3597–3606, 2022. (Jiang Y. and Porter M.D.) [PDF]
26. Multi-frame Abnormality Detection in Video Capsule Endoscopy. Proceedings of the Future Technologies Conference, 177–186, 2022. (Jablonski J., Fernandes P., Adewole S., Syed S., Brown D., and Porter M.) [PDF]
27. A note on the multiplicative fairness score in the NIJ recidivism forecasting challenge. Crime Science, 10(17): 1–5, 2021. (Mohler G. and Porter M.D.) [PDF]
28. Development of Wastewater Pooled Surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Congregate Living Settings. Applied and Environmental Microbiology, 87(13): e00433-21, 2021. (Colosi L.M., Barry K.E., Kotay S.M., Porter M.D., Poulter M.D., Ratliff C., Simmons W., Steinberg L.I., Wilson D.D., Morse R., Zmick P., and Mathers A.J.) [PDF]
29. Unsupervised shot boundary detection for temporal segmentation of long capsule endoscopy videos. arXiv preprint arXiv:2110.09067, : 2021. (Adewole S., Fernandes P., Jablonski J., Copland A., Porter M., Syed S., and Brown D.)
30. A Tale of Two Metrics: Polling and Financial Contributions as a Measure of Performance. IEEE International Systems Conference (SysCon), 2021. (Mostafavi M., Porter M.D., Jiang Y., Phillips M., and Freedman P.) [PDF]
31. How emoji and word embedding helps to unveil emotional transitions from social media interactions. IEEE International Systems Conference (SysCon), 2021. (Mostafavi M. and Porter M.D.) [PDF]
32. Discovering Influence of Yelp Reviews Using Hawkes Point Processes. Intelligent Systems Conference (IntelliSys), 2021. (Jiang Y. and Porter M.D.) [PDF]
33. An Application of the Partially Observed Markov Process in the Analysis of Transmission Dynamics of COVID-19 via Wastewater. Systems and Information Engineering Design Symposium (SIEDS), 2021. (Jiang S., Maggard K., Shakeri H., and Porter M.D.)
34. Safe and Sustainable Fleet Management with Data Analytics and Training. Systems and Information Engineering Design Symposium (SIEDS), 1–3, 2021. (Gresham T.R., Kim J., McDonald J., Scoggins N., Mostafavi M., Park B.B., Porter M.D., Duffy M.E., and Smith S.A.)
35. Wastewater-Based Epidemiological Modeling for Continuous Surveillance of COVID-19 Outbreak. 2021 IEEE International Conference on Big Data (Big Data), 4342–4349, 2021. (Fazli M., Sklar S., Porter M.D., French B.A., and Shakeri H.)
36. Determining Factors of Heart Quality and Donor Acceptance in Pediatric Heart Transplants. Systems and Information Engineering Design Symposium (SIEDS), 2021. (Bullock J., Grieco M., Liu Y., Pedersen I., Roberson W., Wright G., Alonzi P., McCulloch M.A., and Porter M.D.)
37. Lesion2Vec: Deep Meta Learning for Few-Shot Lesion Recognition in Capsule Endoscopy Video. Proceedings of the Future Technologies Conference, 762–774, 2021. (Adewole S., Fernandes P., Jablonski J., Copland A., Porter M., Syed S., and Brown D.)
38. Graph Convolutional Neural Network For Weakly Supervised Abnormality Localization In Long Capsule Endoscopy Videos. 2021 IEEE International Conference on Big Data (Big Data), 388–399, 2021. (Adewole S., Fernandes P., Jablonski J., Copland A., Porter M., Syed S., and Brown D.)
39. Learning to rank spatio-temporal event hotspots. Crime Science, 9(3): 1–12, 2020. (Mohler G., Porter M.D., Carter J., and LaFree G.) [PDF]
40. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology?. Energy Conversion and Management, 203(112252): 2020. (Cheng F., Porter M.D., and Colosi L.M.) [PDF]
41. Traveler Perception of Transportation System Performance Using Kernel Density Estimation to Prioritize Infrastructure Investments. International Conference on Transportation and Development, 48-61, 2020. (Pennetti C.A., Andrews D., Porter M.D., and Lambert J.H.) [PDF]
42. Criminal Consistency and Distinctiveness. Systems and Information Engineering Design Symposium (SIEDS), 1–3, 2020. (Koch A., Tian J., and Porter M.D.) [PDF]
43. Optimization of VDOT Safety Service Patrols to Improve VDOT Response to Incidents. Systems and Information Engineering Design Symposium (SIEDS), 1–6, 2020. (Campbell E., Chamberlayne E., Gawrylowicz J., Hood C., Hudak A., Orlowsky M., Rivero E., and Porter M.) [PDF]
44. Detecting, identifying, and localizing radiological material in urban environments using scan statistics. IEEE International Symposium on Technologies for Homeland Security (HST), 1–6, 2019. (Porter M.D. and Akakpo A.) [PDF]
45. Evaluation of VDOT’s Safety Service Patrols to Improve Response to Incidents. Systems and Information Engineering Design Symposium (SIEDS), 1–5, 2019. (Abrisqueta A., Bishop C.A., Perryman S.P., Shoebotham L.M., Wang J., and Porter M.) [PDF]
46. Optimal Bayesian Clustering using Non-negative Matrix Factorization. Computational Statistics and Data Analysis, 128: 395–411, 2018. (Wang K. and Porter M.D.) [PDF]
47. Rotational grid, PAI-maximizing crime forecasts. Statistical Analysis and Data Mining, 11(5): 227–236, 2018. (Mohler G. and Porter M.D.) [PDF]
48. Learning to rank spatio-temporal event hotspots. URBCOMP2018, 2018. (Mohler G., Porter M.D., Carter J., and LaFree G.) [PDF]
49. Predictive Crash Analytics. Technical Report, 2017. (Porter M.D., Das T., and R Z.)
50. Understanding and Evaluating Predictive Crash Models. SAMSI Summer Program on Transportation Statistics, 2017. (Porter M.D.)
51. How the Choice of Safety Performance Function Affects the Identification of Important Crash Prediction Variables. Accident Analysis and Prevention, 88(1): 1–8, 2016. (Wang K., Simandl J.K., Porter M.D., Graettinger A.J., and Smith R.K.) [PDF]
52. A Statistical Approach to Crime Linkage. The American Statistician, 70(2): 152–165, 2016. (Porter M.D.) [PDF]
53. Consistency and specificity in burglars who commit prolific residential burglary: Testing the core assumptions underpinning behavioural crime linkage. Legal and Criminological Psychology, 21(1): 77–94, 2016. (Bouhana N., Johnson S.D., and Porter M.D.) [PDF]
54. Partially-supervised spatiotemporal clustering for burglary crime series identification. Journal of the Royal Statistical Society: Series A (Statistics in Society), 178(2): 465–780, 2015. (Reich B.J. and Porter M.D.) [PDF]
55. Modelling the effectiveness of counter-terrorism interventions. Trends and Issues in Crime and Criminal Justice, (457): 1–8, 2014. (White G., Mazerolle L., Porter M.D., and Chalk P.) [PDF]
56. GPU accelerated MCMC for modeling terrorist activity. Computational Statistics and Data Analysis, 71: 643–651, 2014. (White G. and Porter M.D.) [PDF]
57. Terrorism Risk, Resilience, and Volatility: A Comparison of Terrorism in Three Southeast Asian Countries. Journal of Quantitative Criminology, 29(2): 295–320, 2013. (White G., Porter M.D., and Mazerolle L.) [PDF]
58. Discussion of Estimating the historical and future probabilities of large terrorist events. The Annals of Applied Statistics, 7(4): 1871–1875, 2013. (Reich B.J. and Porter M.D.) [PDF]
59. Self-exciting hurdle models for terrorist activity. The Annals of Applied Statistics, 6(1): 106–124, 2012. (Porter M.D. and White G.) [PDF]
60. Evaluating temporally weighted kernel density methods for predicting the next event location in a series. Annals of GIS, 18(3): 225–240, 2012. (Porter M.D. and Reich B.J.) [PDF]
61. Innovative Methods for Terrorism and Counterterrorism Data. In Evidence-Based Counterterrorism Policy, Springer New York, 91–112, 2012. (Porter M.D., White G., and Mazerolle L.) [PDF]
62. Network Neighborhood Analysis. IEEE Int. Conf. on Intelligence and Security Informatics (ISI), 31-36, 2010. (Porter M.D. and Smith R.) [PDF]
63. Mixture Likelihood Ratio Scan Statistic for Disease Surveillance. Advances in Disease Surveillance, 5: 1, 2008. (Neimi J.B., Porter M.D., and Reich B.J.) [PDF]
64. Detecting local regions of change in high-dimensional criminal or terrorist point processes. Computational Statistics & Data Analysis, 51(5): 2753 – 2768, 2007. (Porter M.D. and Brown D.E.) [PDF]

In Progress

65. A Fast Two Stage Anomaly Detection Method for Large Dynamic Networks. (Li H. and Porter M.D.)
66. The Predictability of Highway Crash Hotspots. (Liao Y. and Porter M.D.)
67. Predictive Based Model Selection for Detecting Insider Cyber Security Threats. (Posey C., Porter M.D., Lowry P., and Moody G.)
68. Contagion and Diffusion Models for the Dynamics of Terrorist Activity. [Under Contract with CRC Press] (White G.W. and Porter M.D.)