Contents

1 Boosting .. 2

2 AdaBoost .. 2
 2.1 Adaboost Algorithm 4
 2.2 R package ada ... 7

3 Gradient Boosting ... 8
 3.1 L_2 Boosting .. 8
 3.2 GBM (Gradient Boosting Machine) 10
 3.3 xgboost (Extreme Gradient Boosting) 11
 3.4 CatBoost .. 13
 3.5 LightGBM ... 13
1 Boosting

Boosting is a *sequential* ensemble method.

Boosting Sketch

- There are two main versions of boosting:
 - *Gradient Boosting*: fits the next model in the sequence $\hat{g}_k(x)$ to the (pseudo) residuals calculated from the predictions on the previous models $\sum_{l=0}^{k-1} \hat{w}_l \hat{g}_l(x)$.
 - *AdaBoost*: fits the next model to sequentially *weighted* observations. The weights are proportional to the how poorly the current models predict the observation.

- Boosting is primarily a *bias reducer*
 - The base models are often simple/weak (low variance, but high bias) models (like shallow trees)

2 AdaBoost

AdaBoost was motivated by the idea that many *weak* learners can be combined to produce a *strong* aggregate model.

- AdaBoost is for binary classification problems
- Trees are a popular base learner
 - *Weak* learners are usually used. For trees, this means shallow depth.
- At each iteration, the current model is evaluated.
 - The *ensemble weight* of model m is based on its performance (on all the training data)
 - The *observation weight* of observation i is increased if it is mis-classified and decreased if it is correctly classified.
– Thus, at each iteration, those observations that are mis-classified are weighted higher and get extra attention in the next iteration.

• Because Adaboost uses hard-classifiers, it is sensitive to unbalanced data and unequal misclassification costs.
 – Because the thresholds are set to $p > .50$
 – There are, of course, ways to account for unbalance and unequal costs in the algorithm
 – An improvement to AdaBoost, LogitBoost explicitly attempts to estimate the class probability during each iteration which will allow easier post-fitting adjustments for unequal costs
2.1 Adaboost Algorithm

Algorithm: AdaBoost

Inputs:
- \(D = \{(x_i, y_i)\}_{i=1}^n \), where \(y_i \in \{-1, 1\} \)
- Tuning parameters for base model \(\hat{g} \)

Algorithm:
1. Initialize observation weights \(w_i = 1/n \) for all \(i \)
2. For \(k = 1 \) to \(M \):
 a. Fit a classifier \(\hat{g}_k(x) \) that maps \((x_i, w_i)\) to \(\{-1, 1\} \). In other words, the classifier must make a hard classification using weighted observations.
 b. Compute the weighted mis-classification rate
 \[
 e_k = \frac{\sum_{i=1}^n w_i \mathbb{1}(y_i \neq \hat{g}_k(x_i))}{\sum_{i=1}^n w_i}
 \]
 c. Calculate the coefficient for model \(k \) (ensemble weight)
 \[
 a_k = \log \left(\frac{1 - e_k}{e_k} \right)
 \]
 d. Update the observations weights. Increase weights for observations that are mis-classified by model \(\hat{g}_k \) and decrease weights for the correctly classified observations.
 \[
 \tilde{w}_i = w_i \cdot \exp \left(a_k \cdot \mathbb{1}(y_i \neq \hat{g}_k(x_i)) \right)
 \]
 \[
 w_i = \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} \quad \text{(re-normalize weights)}
 \]
3. Output final ensemble \(\hat{f}_M(x) \in [-1, 1] \)
 \[
 \hat{f}_M(x) = \sum_{k=1}^M a_k \hat{g}_k(x)
 \]
 - Or remap to a probability \(\hat{p}(x) = \frac{e^{\hat{f}_M(x)}}{1 + e^{\hat{f}_M(x)}} \)
2.1.1 Illustration with Stumps (depth = 1, n.nodes=2)
2.1.2 Illustration with depth = 2, n.nodes=4

![Diagram of decision trees with depth 2 and n.nodes=4](image-url)
2.2 R package ada

The R package ada provides an implementation of AdaBoost (and related methods).

 - \{Discrete, Real, Gentle\} AdaBoost
 - Logitboost
3 Gradient Boosting

In gradient boosting, instead of re-weighting the observations, each new model is fit to the functional gradients (i.e., a type of residuals)

- Gradient Boosting can fit to a variety of loss functions by simply changing how the residuals are calculated.
- Again, trees are often used as the base learner
 - For gradient boosting, regression trees are used

3.1 L_2 Boosting

L_2 boosting is based on the the squared error loss function

$$L(y_i, \hat{f}(x_i)) = \frac{1}{2}(y_i - \hat{f}(x_i))^2$$

- The residuals are

$$r_i = \left[\frac{\partial L(y_i, f_i)}{\partial f_i} \right]_{f_i=\hat{f}(x_i)}$$

$$= y_i - \hat{f}(x_i)$$

- This is basically just re-fitting to the residuals.

Algorithm: L_2 Boosting

1. Initialize $\hat{f}_0(x) = \bar{y}$

2. For $k = 1$ to M:
 a. Calculate residuals $r_i = y_i - \hat{f}_{m-1}(x_i)$ for all i
 b. Fit a base learner (e.g., regression trees) to the residuals $\{(x_i, r_i)\}_{i=1}^n$ to get the model $\hat{g}_m(x)$
 c. Update the overall model $\hat{f}_m(x) = f_{m-1}(x) + \nu \hat{g}_m(x)$
 - $0 \leq \nu \leq 1$ is the step-size (shrinkage)

3. Final model is $\hat{f}_M(x) = \bar{y} + \sum_{k=1}^M \nu \hat{g}_k(x)$

- Like AdaBoost, emphasis is given to observations that are predicted poorly (large residuals)
3.1.1 Illustration using stumps (depth=1, n.nodes=2)
3.2 GBM (Gradient Boosting Machine)

- R package `gbm`
- GBM Documentation

3.2.1 Model/Tree Tuning Parameters

- Tree depth (`interaction.depth`)
 - Grows trees to a depth specified by `interaction.depth` (unless there are not enough observations in the terminal nodes)

- Minimum number of observations allowed in the terminal nodes (`n.minobsinnode`)

- Sub-sampling (`bag.fraction`)
 - *Stochastic Gradient Boosting*
 - Sample (without replacement) at each iteration

- Loss Function (`distribution`)
 - The loss function is determined by the `distribution` argument
 - Use `distribution="gaussian"` for squared error
 - Other options are: `bernoulli` (for logistic regression), `poisson` (for Poisson regression), `pairwise` (for ranking/LambdaMart), `adaboost` (for the adaboost exponential loss), etc.

3.2.2 Boosting Tuning Parameters

- Number of iterations/trees (`n.trees`)
 - Use cross-validation (or out-of-bag) to find optimal value
 - Can use the helper function `gbm.perf()` to get the optimal value
• Shrinkage parameter (shrinkage)
 – Set small, but the smaller the shrinkage, the more iterations/trees need to be used
 – “Ranges from 0.001 to 0.100 usually work”
• Cross-validation (cv.folds)
 – gbm has a built in cross-validation
 – no way to manually set the folds

3.2.3 Computational Settings

• Number of Cores (n.cores)
 – Only used when cross-validation is implemented

3.3 xgboost (Extreme Gradient Boosting)

• R package xgboost
• xgboost Documentation
• xgboost Paper

3.3.1 Model/Tree Tuning Parameters

• Different base leaners (booster)
 – gbtree is a tree
 – gblinear creates a (generalized) linear model (forward stagewise linear model)
• Tree building (tree_method)
 – To speed up the fitting, only consider making splits at certain quantiles of the input vector (rather than considering every unique value)
• Sub-sampling (subsample)
 – Stochastic Gradient Boosting
 – Sample (without replacement) at each iteration
• Feature sampling (colsample_bytree, subsample_baselevel, colsample_bynode)
 – Like used in Random Forest, the features/columns are subsampled
 – Can use a subsample of features for each tree, level, or node

Model Complexity Parameters

• Tree depth (max_depth)
 – Grows trees to a depth specified by max_depth (unless there are not enough observations in the terminal nodes)
 – Trees may not reach max_depth if the gamma or min_child_weight arguments are set.
• Minimum number of observations (or sum of weights) allowed in the terminal nodes (min_child_weight)
• Pruning (gamma or min_split_loss)
 – Minimum loss reduction required to make a further partition on a leaf node of the tree
The larger gamma is, the more conservative the algorithm will be

- ElasticNet type penalty (\(\lambda\) and \(\alpha\))
 - \(\lambda\) is an \(L_2\) penalty
 - \(\alpha\) is an \(L_1\) penalty

- Recall that trees model the response as a constant in each region
 \[
 \hat{f}_T(x) = \sum_{m=1}^{M} \hat{c}_m \mathbb{1}(x \in \hat{R}_m)
 \]

- Cost-complexity pruning found the optimal tree as the one that minimized the penalized loss objective function:
 \[
 C_\gamma(T) = \sum_{m=1}^{\lfloor T \rfloor} \text{Loss}(T) + \gamma |T|
 \]

- XGBoost selects a tree at each iteration using the following penalized loss:
 \[
 C_{\gamma,\lambda,\alpha}(T) = \sum_{m=1}^{\lfloor T \rfloor} \text{Loss}(T) + \gamma |T| + \frac{\lambda}{2} \sum_{m=1}^{\lfloor T \rfloor} \hat{c}_m^2 + \alpha \sum_{m=1}^{\lfloor T \rfloor} |\hat{c}_m|
 \]

- Loss Function (objective)
 - The loss function is determined by the \texttt{objective} argument
 - Use \texttt{reg:squarederror} for squared error
 - Other options are: \texttt{reg:logistic} or \texttt{binary:logistic} (for logistic regression), \texttt{count:poisson} (for Poisson regression), \texttt{rank:pairwise} (for ranking/LambdaMart), etc.

3.3.2 Boosting Tuning Parameters

- Shrinkage parameter (\texttt{eta} or \texttt{learning_rate})
 - Set small, but the smaller the \texttt{eta}, the more iterations/trees need to be used

- Number of iterations/trees (\texttt{num_rounds})
 - Use cross-validation (or out-of-bag) to find optimal value

- Cross-validation (\texttt{xgb.cv})
 - \texttt{xgboost} has a built in cross-validation
 - It is possible to manually set the folds

3.3.3 Computational Settings

- Number of Threads (\texttt{nthread})

 - Used for finding tree split points and evaluating/calculating the loss function
3.4 CatBoost

- CatBoost Documentation
- Model/Tree Tuning Parameters:

3.5 LightGBM

- R Package: https://github.com/microsoft/LightGBM/tree/master/R-package
- LightGBM Documentation
- Model/Tree Tuning Parameters:
• Boosting Tuning Parameters: