Class | Date | Day | Topic | Reading (Pre-Class) | Notes |
---|---|---|---|---|---|
1 | Jan 13 | Mon | Introduction | Pre-Req material; R and Rstudio Modern Data Science with R sections: 2,3,4,6,7,9 |
HW 0 assigned; Download textbooks; update software; review pre-req material |
2 | Jan 15 | Wed | Linear Regression with R | ISL 3.1-3.6 | R formula interface |
Jan 16 | Thu | HW 0 Due | |||
Jan 20 | Mon | No Class | |||
3 | Jan 22 | Wed | Supervised Learning I | ISL 1, 2.1, 7.1 ESL 1, 2.1-2.4 |
|
4 | Jan 27 | Mon | Supervised Learning II | ISL 2.2-2.3 ESL 2.5-2.9 |
|
5 | Jan 29 | Wed | Resampling: Bootstrap and Splines | ISL 5.2, 7.2-7.4 ESL 7.11, 5.1-5.3 (optional) Bootstrapping Regression Models |
|
Jan 30 | Thu | HW 1 Due | |||
6 | Feb 03 | Mon | Resampling: Cross-Validation and Model Selection | ISL 5.1 ESL 7.10 ISL Chap 3 (review) |
|
7 | Feb 05 | Wed | Penalized Regression | ISL 6.1-6.2 ESL 3.3-3.4 |
|
Feb 06 | Thu | HW 2 Due | |||
8 | Feb 10 | Mon | Penalized Regression | ISL 6.4-6.5 (optional 6.3) ESL 3.5-3.6 |
|
9 | Feb 12 | Wed | Tree-Based Methods | ISL 8.1, 8.3.1-8.3.2 ESL 9.2 |
|
Feb 13 | Thu | HW 3 Due | |||
10 | Feb 17 | Mon | Tree-Based Methods | ISL 8.2, 8.3.3-8.3.4 ESL 15 |
|
11 | Feb 19 | Wed | Classification: Probability Modeling | ISL 4.1-4.3 ESL 4.1-4.4 |
|
Feb 20 | Thu | HW 4 Due | |||
12 | Feb 24 | Mon | Classification: Decision Theory | ESL 9.1 | |
13 | Feb 26 | Wed | Support Vector Machines (SVM) | ISL 9.1-9.6 ESL 12.1-12.3 or MMDS 12.3 |
|
Feb 27 | Thu | HW 5 Due | |||
14 | Mar 03 | Mon | Prediction Bias and Calibration | Calibration: the Achilles heel of predictive analytics | |
15 | Mar 05 | Wed | Review | ||
Mar 06 | Thu | HW 6 Due | |||
Mar 10 | Mon | No Class | |||
Mar 12 | Wed | No Class | |||
16 | Mar 17 | Mon | No Class | ||
17 | Mar 19 | Wed | Ensembles and Stacking | ISL 8.2 | |
18 | Mar 24 | Mon | Boosting | ISL 8.2.3; ESL 10.1-10.9 LogitBoost paper |
|
19 | Mar 26 | Wed | Boosting | ESL 10.10-10.14 XGBoost, CatBoost, LightGBM |
|
Mar 27 | Thu | HW 7 Due | |||
20 | Mar 31 | Mon | Special topics in boosting | Generalized Additive Models (GAM) | |
21 | Apr 02 | Wed | Feature Importance and XAI | Interpretable Machine Learning: Permutation Feature Importance | |
Apr 03 | Thu | HW 8 Due | |||
22 | Apr 07 | Mon | Feature Engineering | ISLR 6.3 | |
23 | Apr 09 | Wed | Density/Probability Estimation | IPSUR:
pg. 209-218 (MLE intro) Maximum Likelihood Estimation: pg. 221-223 IPSUR Chap. 5-7 (Random Variable Review, if necessary) |
|
Apr 10 | Thu | HW 9 Due | |||
24 | Apr 14 | Mon | Density/Probability Estimation | Silverman 2.1-2.6 | |
25 | Apr 16 | Wed | Generative Classifiers | ISL 4.4-4.5; ESL 6.6 | |
Apr 17 | Thu | HW 10 Due | |||
26 | Apr 21 | Mon | Clustering 1 | Primary: ISL 12.4-12.5; ITDM 7.1; 7.5 Secondary: ESL 14.3.1-14.3.8; 14.3.12; ITDM 7.2-7.3 |
|
27 | Apr 23 | Wed | Clustering 2 | Primary: ESL 8.5.1 Secondary: Gaussian Mixture Models: 11.1-11.3 |
|
28 | Apr 28 | Mon | TBD | ||
May 03 | Sat | Final Exam Due 5pm |