
16 - Word Cloud
Data and Information Engineering

SYS 2202 | Fall 2019

16-wordcloud.pdf

Contents

1 Text Mining 2
1.1 Goals . 2
1.2 Read in Text Documents . 2
1.3 Make it tidy . 2
1.4 Explore . 3

2 Transformations 3
2.1 Cleaning Text . 4
2.2 Stemming (and Lemmatization) . 4

3 Word Counts 5
3.1 Word Clouds . 6

Required Packages and Data
library(SnowballC) # install.packages("SnowballC")
library(tidytext) # for working with text in a tidy way
library(tidyverse) # for data manipulation

16 - Word Cloud SYS 2202 | Fall 2019 2/6

1 Text Mining

We are going to be working with functions from tidyverse (e.g., stringr, dplyr) and tidytext to
do some basic text mining and build a word cloud. A good introduction to the tidytext package is the
free book Text Mining with R (by Silge and Robinson)

1.1 Goals

We are going to analyze a set of documents related to business analytics. Specifically, we are going to break a
document down into a frequency distribution of its words and examine the most frequent (and potentially the
most important words).

Like all topics we have covered this semester, we are only scratching the surface of what is possible in the
field of text mining and text analytics. Document clustering, author attribution, sentiment analysis, natural
language processing (NLP), entity extraction, word and document networks, etc. are just some examples of
where you can go with this. Hopefully, we cover enough so you can start to imagine and think about what is
possible with text data.

We have 26 plain text (.txt) documents. We are going to read these into R and create a character vector where
each element is a document.

1.2 Read in Text Documents
Here we will do this manually with a loop and read_file(). The data files can be found here https://raw.
githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-xx.txt, where xx is two digits between
01-26.
#- read in all documents
base_url = "https://raw.githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-"
end_url = ".txt"

docs = character(26) # create vector of 26 blank elements
for(i in 1:26){ # for loop to set the value of i

file_num = str_pad(i, width=2, side="left", pad="0") # make 2 digit number
url = str_c(base_url, file_num, end_url)
docs[i] = read_file(url)

}

#- example document
docs[22] # raw form
cat(str_wrap(docs[22], width=75)) # displayed form
#> My very simple take: Programming in R/Python both for data analysis and
#> for visualization. Equally important more or less in my view. Beyond that,
#> hands-on data set analysis. Teach people to look at data and decide the
#> best approach themselves rather than telling them which approach to take
#> and grading on their ability to do so. Manager of Analytics

1.3 Make it tidy

A tidy text format is a table with one token per row.

• A token can be a: word, n-gram, sentence, line, paragraph, tweet
• This will let us use the power of our tidyverse functions

First, we will get the documents into a tibble:

https://www.tidytextmining.com/index.html
https://raw.githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-xx.txt
https://raw.githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-xx.txt

16 - Word Cloud SYS 2202 | Fall 2019 3/6

text_df = tibble(document = 1:length(docs), text=docs)

Then, we can unnest the documents so there is one word per row:
library(tidytext) # for unnest_tokens()
(word_df = text_df %>%

unnest_tokens(output=word, # name of new column
input=text, # the column to unnest
token="words", # what to use as the tokens
to_lower=TRUE, # convert all words to lowercase
strip_punct=TRUE)) # remove punctuation

#> # A tibble: 5,706 x 2
#> document word
#> <int> <chr>
#> 1 1 obviously
#> 2 1 i
#> 3 1 know
#> 4 1 more
#> 5 1 about
#> 6 1 basketball
#> # ... with 5,700 more rows

1.4 Explore
Notice that there are many words are uninteresting: “to”, “and”, “of”, “the”. We also have lots of numbers
word_df %>%

filter(str_detect(word, "[0-9]")) %>%
distinct()

#> # A tibble: 45 x 2
#> document word
#> <int> <chr>
#> 1 1 2
#> 2 2 d3
#> 3 3 100
#> 4 4 8
#> 5 9 1
#> 6 9 2
#> # ... with 39 more rows

And, consider if any of these words should be considered together?
word_df %>%

filter(str_detect(word, pattern="[Aa]naly")) %>%
pull() %>% unique()

#> [1] "analytics" "analysts" "analyzing" "analyze" "analytical"
#> [6] "analysis" "analyst" "analytic"

2 Transformations

Before we start our data analysis and modelling, it is often necessary to modify the text in some ways. For
example, the basic step of extracting the words is one task that is usually performed. To help understand the
information in text, we can also:

• remove whitespace
• convert letters to same case (e.g., lowercase) [already done in unnest_tokens()]
• removing punctuation [already done in unnest_tokens()]

16 - Word Cloud SYS 2202 | Fall 2019 4/6

• removing stop words, common words that do not carry much meaning to the analysis (e.g., “an”, “a”,
“the”)

• removing numbers or other non-text characters
• etc.

2.1 Cleaning Text

Most of these can be done with a combination of mutate(), anti_join(), and filter():
#-- Stop Words
(data(stop_words, package="tidytext"))
#> [1] "stop_words"

#-- List of software (named list using desired case)
software_list = c(r='R', sql='SQL', python ='Python',

tableau='Tableau', d3='D3', mysql='MySQL',
sas='SAS', spss='SPSS', excel='Excel')

#-- Clean text
clean_df = word_df %>%

mutate(word = recode(word, !!!software_list)) %>% # convert important words
mutate(word = str_trim(word, side="both"), # remove extra whitespace

word = str_remove_all(word, "'"), # remove apostrophes
word = str_remove_all(word, "[0-9]") # remove numbers
#word = str_remove(word, "[[:punct:]]+") # remove punctuation
#word = str_to_lower(word) # unnest_tokens() converted to lowercase
) %>%

anti_join(stop_words, by="word") %>% # remove rows with stopwords
filter(word != "") # ignore blanks

2.2 Stemming (and Lemmatization)

We noticed a potential problem when multiple words correspond to the same concept or idea. For example,
“analyzing”, “analyze”, and “analysis” could potentially be grouped together for frequency analysis (note:
this could potentially be done after processing, but then we will be forced to deal with much larger data).

Stemming and Lemmatization refer to the process of reducing words to a base or root form so multiple words
that carry similar meaning/information can be combined. Stemming uses letter patterns (think regex) while
lemmatization finds the part of speech to help guide the stemming. Some more details can be found here
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html.

Stemming can be achieved using Porter’s (not me!) stemming algorithm http://snowball.tartarus.org/
algorithms/porter/stemmer.html. But this requires a function from the SnowballC package, which must be
installed and loaded. Here is an example of how the stemming works
library(SnowballC) # for wordStem() function
clean_df %>%
filter(str_detect(word, pattern="[Aa]naly")) %>%
mutate(stemmed=wordStem(word)) %>%
distinct(word, stemmed) %>%
knitr::kable()

word stemmed

analytics analyt
analysts analyst
analyzing analyz

http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html

16 - Word Cloud SYS 2202 | Fall 2019 5/6

word stemmed

analyze analyz
analytical analyt
analysis analysi
analyst analyst
analytic analyt

Stemming may not great for word cloud, because the stemmed version may not make much sense. One
approach is to stem the words, then use one representative word in the word cloud. However, we will not go
into this much detail here.

3 Word Counts

In the tidy format, getting word frequencies is easy:

• n is the total number of times a word appears in all the documents (so a word that appears more than
once in a document will be counted more than once.)

• n_docs is the number of documents that contain the word (so a word that appears more than once in
a document will only be counted once.)

(counts = clean_df %>%
group_by(word) %>%
summarize(n = n(),

n_docs = n_distinct(document)) %>%
arrange(-n))

#> # A tibble: 1,145 x 3
#> word n n_docs
#> <chr> <int> <int>
#> 1 data 81 20
#> 2 analytics 69 22
#> 3 skills 28 12
#> 4 business 19 13
#> 5 program 18 7
#> 6 R 17 9
#> # ... with 1,139 more rows

We can check the frequence of software mentions
counts %>% filter(word %in% software_list) %>% knitr::kable()

word n n_docs

R 17 9
SQL 13 9
Python 12 9
Tableau 5 4
SAS 3 3
Excel 2 2
MySQL 1 1
SPSS 1 1

(But we don’t know from the words alone if these are positive or negative metnions. e.g., document 14 “Move
away from Excel”).

16 - Word Cloud SYS 2202 | Fall 2019 6/6

3.1 Word Clouds

A word cloud is a graphical representation of text that sizes and colors the words. Size is usually considered
to be proportional to the frequency of the word’s occurrence, but in general could be related to some other
measure of importance.

The R package ggwordcloud implements a wordcloud geom for use with ggplot2. The package has a
helpful webpage with examples: ggwordcloud R package help
library(ggwordcloud)
set.seed(2019) # the text location is based on random initialization
counts %>% filter(n > 6 | word %in% software_list) %>%

mutate(software = word %in% software_list) %>%
ggplot() +
geom_text_wordcloud(aes(label=word, size=n, color=software)) +
scale_size_area(max_size = 15) +
theme_minimal()

data
analytics

skills

business
program

R

analysis
director

programs

science

time

learning

SQL

industry

Python
students

understanding statistical

experience

machine

model

scientists

tools

design

development

information

knowledge

learn

people

programming

analysts

chief

classes
job

officer
real

results

school set

statistics
ability based

companies

computer

deep

languages

marketing

multiple perspective

project

sports

strong

techniques

topics

world
Tableau

SAS

Excel

MySQL SPSS

https://lepennec.github.io/ggwordcloud/

	Text Mining
	Goals
	Read in Text Documents
	Make it tidy
	Explore

	Transformations
	Cleaning Text
	Stemming (and Lemmatization)

	Word Counts
	Word Clouds

