
12 - Relational Data and Joins
Data and Information Engineering

SYS 2202 | Fall 2019

12-relational.pdf

Contents

Some figures and text from this chapter are taken from R for Data Science by Garrett Grolemund & Hadley Wickham

Required Packages and Data
library(nycflights13)
library(Lahman)
library(babynames)
library(fueleconomy)
library(nasaweather)
library(tidyverse)

1

https://r4ds.had.co.nz/

12 - Relational Data and Joins SYS 2202 | Fall 2019 2/14

1 Relational Data

We are going to follow the discussion in Chapter 13 Relational Data from the R for Data Science book.

1.1 nycflights13
Load the nycflights13 package and check out the available datasets.
library(nycflights13) # load package
data(package='nycflights13') # shows datasets

airlines Airline names.
airports Airport metadata
flights Flights data
planes Plane metadata.
weather Hourly weather data

Print out the column names as a list
list(airlines = colnames(airlines),

airports = colnames(airports),
flights = colnames(flights),
planes = colnames(planes),
weather = colnames(weather))

#> $airlines
#> [1] "carrier" "name"
#>
#> $airports
#> [1] "faa" "name" "lat" "lon" "alt" "tz" "dst" "tzone"
#>
#> $flights
#> [1] "year" "month" "day" "dep_time"
#> [5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
#> [9] "arr_delay" "carrier" "flight" "tailnum"
#> [13] "origin" "dest" "air_time" "distance"
#> [17] "hour" "minute" "time_hour"
#>
#> $planes
#> [1] "tailnum" "year" "type" "manufacturer"
#> [5] "model" "engines" "seats" "speed"
#> [9] "engine"
#>
#> $weather
#> [1] "origin" "year" "month" "day" "hour"
#> [6] "temp" "dewp" "humid" "wind_dir" "wind_speed"
#> [11] "wind_gust" "precip" "pressure" "visib" "time_hour"

http://r4ds.had.co.nz/relational-data.html

12 - Relational Data and Joins SYS 2202 | Fall 2019 3/14

https://github.com/hadley/r4ds/blob/master/diagrams/relational-nycflights.png

1.2 Exercises
1. Imagine you want to draw a line for the route each plane flies from its origin to its destination. What variables

would you need? What tables would you need to combine?

2. I forgot to draw the a relationship between weather and airports.
What is the relationship and what should it look like in the diagram?

3. weather only contains information for the origin (NYC) airports. If it contained weather records for all airports
in the USA, what additional relation would it define with flights?

1.2.1 Your Turn: Relations

Your Turn #1 : Relations

1. You might expect that there is an implicit relationship between planes and airlines, because each
plane is flown by a single airline. Confirm or reject this hypothesis using data.

• Can planes and airlines be directly connected?
• How could planes and airlines be connected from the flights data?
• Do some planes (tailnum) have multiple carriers? How can we find out with the flights data?

1.3 Keys (R4DS 13.3)
The variables used to connect each pair of tables are called keys. A key is a variable (or set of variables) that uniquely
identifies an observation.

There are two types of keys:

• A primary key uniquely identifies an observation in its own table.
– For example, planes$tailnum is a primary key because it uniquely identifies each plane in the
planes table.

• A foreign key uniquely identifies an observation in another table.
– For example, the flights$tailnum is also a foreign key because it appears in the flights table

where it matches each flight to a unique plane.

http://r4ds.had.co.nz/relational-data.html#keys

12 - Relational Data and Joins SYS 2202 | Fall 2019 4/14

1.3.1 Primary Keys

• A primary key can made from multiple columns. This is called a composite primary key.
– For example, the weather table (should) have a primary key of: origin, year, month, day, hour

(but see below to see if it really does)
• The primary key column(s) must have unique values; there shouldn’t be any duplicates.

– There also can’t be any missing (NA) or NULL values
• If there is not a natural primary key, then we can create a surrogate key. This is simply a unique identifier for

each row.

We can check for (verify) a primary key with the code

count(<data>, <keys>) %>% filter(n>1) # this should be empty if primary key

For example,
planes %>% count(tailnum) %>% filter(n>1)
#> # A tibble: 0 x 2
#> # ... with 2 variables: tailnum <chr>, n <int>
weather %>% count(origin, year, month, day, hour) %>% filter(n>1)
#> # A tibble: 3 x 6
#> origin year month day hour n
#> <chr> <dbl> <dbl> <int> <int> <int>
#> 1 EWR 2013 11 3 1 2
#> 2 JFK 2013 11 3 1 2
#> 3 LGA 2013 11 3 1 2
Note: not unique! there were multiple measures at the same time.

Column Summaries

If we want to check if any single column could be a primary key (e.g., has unique values), we can use the
summarize_all() function.
#-- Find number of unique values in all columns
airports %>% summarize_all(n_distinct)
#> # A tibble: 1 x 8
#> faa name lat lon alt tz dst tzone
#> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 1458 1440 1456 1458 911 7 3 10

#-- Find if any columns have all unique values
airports %>%

summarize_all(function(x) n_distinct(x) == length(x)) %>%
gather(column, key) # convert to long format

#> # A tibble: 8 x 2
#> column key
#> <chr> <lgl>
#> 1 faa TRUE
#> 2 name FALSE
#> 3 lat FALSE
#> 4 lon TRUE
#> 5 alt FALSE
#> 6 tz FALSE
#> # ... with 2 more rows

There are also summarize_if(), and summarize_at() functions that can simplify code when
you want to apply the same function(s) to many columns:

12 - Relational Data and Joins SYS 2202 | Fall 2019 5/14

#-- Get the mean value for all *numeric* columns
flights %>%

summarize_if(is.numeric, mean, na.rm=TRUE) %>%
gather(column, mean) # convert to long format

#> # A tibble: 14 x 2
#> column mean
#> <chr> <dbl>
#> 1 year 2013
#> 2 month 6.55
#> 3 day 15.7
#> 4 dep_time 1349.
#> 5 sched_dep_time 1344.
#> 6 dep_delay 12.6
#> # ... with 8 more rows

1.3.2 Exercises

1. What is the primary key for flights dataset?

2. Add a surrogate key to flights.

3. Identify the keys in the Lahman::Batting dataset. Hint, convert Batting to tibble to help with
printing.

4. Draw a diagram illustrating the connections between the Batting, Master, and Salaries tables
in the Lahman package.

5. How would you characterise the relationship between the Batting, Pitching, and Fielding
tables?

1.3.3 Your Turn: Keys

Your Turn #2 : Keys

Identify the keys in the following datasets:
1. babynames::babynames
2. nasaweather::atmos
3. fueleconomy::vehicles

12 - Relational Data and Joins SYS 2202 | Fall 2019 6/14

2 Joins

Joins are used to combine or merge two datasets. This is a major aspect of SQL. While the base function
merge() can also do some of these things, we will examine the functions available from the dplyr
package.

• The Data Transformation Cheatsheet is a good reference.

• The chapter R4DS: Relational Data has helpful details.

There are two main types of joins:

1. mutating joins add columns

2. filtering joins remove rows

2.1 Mutating joins (R4DS 13.4)

The idea of a mutating join is to combine information (i.e., columns) from two tables.

• To do this, the function will need to know how the rows are connected. E.g., row 3 from Table 1 is
connected to row 10 from Table 2.

– Thus, joins will use primary and foreign keys to connect the rows

Make the flights2 data (fewer columns so we can better see the new columns)
(flights2 <- flights %>% select(year:day, hour, origin, dest, tailnum, carrier))
#> # A tibble: 336,776 x 8
#> year month day hour origin dest tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA
#> 2 2013 1 1 5 LGA IAH N24211 UA
#> 3 2013 1 1 5 JFK MIA N619AA AA
#> 4 2013 1 1 5 JFK BQN N804JB B6
#> 5 2013 1 1 6 LGA ATL N668DN DL
#> 6 2013 1 1 5 EWR ORD N39463 UA
#> # ... with 3.368e+05 more rows

Join flights2 with the airlines data to add the airline name
#- Solution using joins
flights2 %>%
left_join(airlines, by = "carrier") # use the `carrier` column

#> # A tibble: 336,776 x 9
#> year month day hour origin dest tailnum carrier name
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA United Air Lines In~
#> 2 2013 1 1 5 LGA IAH N24211 UA United Air Lines In~
#> 3 2013 1 1 5 JFK MIA N619AA AA American Airlines I~
#> 4 2013 1 1 5 JFK BQN N804JB B6 JetBlue Airways
#> 5 2013 1 1 6 LGA ATL N668DN DL Delta Air Lines Inc.
#> 6 2013 1 1 5 EWR ORD N39463 UA United Air Lines In~
#> # ... with 3.368e+05 more rows

Alternative solutions
#- explicit argument names
left_join(x = flights2, y = airlines, by = "carrier")

#- Solution using match() and indexing

https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf
https://r4ds.had.co.nz/relational-data.html
http://r4ds.had.co.nz/relational-data.html#mutating-joins

12 - Relational Data and Joins SYS 2202 | Fall 2019 7/14

flights2 %>%
mutate(name = airlines$name[match(carrier, airlines$carrier)])

Mutating Joins See 13.4 of R4DS

• inner_join(x, y) only includes observations having matching x and y key values.
– Note: Rows of x can be dropped/filtered.

• The left_join(), right_join() and full_join() are collectively know as outer joins.
– When a row doesn’t match in an outer join, the new variables are filled in with missing values.
– outer joins will fill any missing values with NA

• left_join(x, y) includes all observations
in x, regardless of whether they match or not.
This is the most commonly used join because
it ensures that you don’t lose observations from
your primary table.

• right_join(x, y) includes all observa-
tions in y. It’s equivalent to left_join(y,
x), but the columns will be ordered differently.

• full_join() includes all observations from
x and y.

If there are duplicate keys, all combinations are returned.

12 - Relational Data and Joins SYS 2202 | Fall 2019 8/14

One to Many

Many to Many

2.1.1 Defining the Key Columns (R4DS 13.4.5)

Check out the help for a join to see its arguments.
?inner_join

Notice that the by= argument is set to NULL which indicates a natural join. A natural join uses all variables
with common names across the two tables.

For example,
left_join(x=flights2, y=weather) # flights2 %>% left_join(weather)
#> Joining, by = c("year", "month", "day", "hour", "origin")
#> # A tibble: 336,776 x 18
#> year month day hour origin dest tailnum carrier temp dewp humid
#> <dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
#> 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
#> 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
#> 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
#> 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
#> 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
#> # ... with 3.368e+05 more rows, and 7 more variables: wind_dir <dbl>,
#> # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
#> # visib <dbl>, time_hour <dttm>

And notice the message Joining by: c("year", "month", "day", "hour", "origin"),
which indicates the variables used for joining. This is equivalent to explicitly using
left_join(flights2, weather, by = c("year", "month", "day", "hour", "origin"))
#> # A tibble: 336,776 x 18
#> year month day hour origin dest tailnum carrier temp dewp humid
#> <dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
#> 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
#> 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
#> 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6

http://r4ds.had.co.nz/relational-data.html#join-by

12 - Relational Data and Joins SYS 2202 | Fall 2019 9/14

#> 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
#> 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
#> # ... with 3.368e+05 more rows, and 7 more variables: wind_dir <dbl>,
#> # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
#> # visib <dbl>, time_hour <dttm>

It is always to good to set by=, so you don’t get any unintentional results, like this
left_join(flights2, planes, by = NULL)
#> Joining, by = c("year", "tailnum")
#> # A tibble: 336,776 x 15
#> year month day hour origin dest tailnum carrier type manufacturer
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA <NA> <NA>
#> 2 2013 1 1 5 LGA IAH N24211 UA <NA> <NA>
#> 3 2013 1 1 5 JFK MIA N619AA AA <NA> <NA>
#> 4 2013 1 1 5 JFK BQN N804JB B6 <NA> <NA>
#> 5 2013 1 1 6 LGA ATL N668DN DL <NA> <NA>
#> 6 2013 1 1 5 EWR ORD N39463 UA <NA> <NA>
#> # ... with 3.368e+05 more rows, and 5 more variables: model <chr>,
#> # engines <int>, seats <int>, speed <int>, engine <chr>

Why all the NA’s?

Notice that flights has a year column that refers to the year of the flight. The planes also has a year
column, but this refers to the year manufactured. Not many flights with a plane that is just made. What we
really want is to joining by = 'tailnum' only:
left_join(flights2, planes, by = "tailnum")
#> # A tibble: 336,776 x 16
#> year.x month day hour origin dest tailnum carrier year.y type
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixe~
#> 2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixe~
#> 3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixe~
#> 4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixe~
#> 5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixe~
#> 6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixe~
#> # ... with 3.368e+05 more rows, and 6 more variables: manufacturer <chr>,
#> # model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>

And notice that because of the conflict, the year variable is no longer. Instead, the year.x variables is the
year from the flights2 data and the year.y variable represents the year from the planes data.

2.1.1.1 Named Key Specification
If the same key has different names between the two tables, then a named character vector can be used.
Recall the airports data has a key column faa that indicates the FAA airport code. This links to the
origin and dest fields in the flights2 data.

#- join airports$faa to flights2$dest
left_join(flights2, airports, c("dest" = "faa"))
#> # A tibble: 336,776 x 15
#> year month day hour origin dest tailnum carrier name lat lon
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2013 1 1 5 EWR IAH N14228 UA Geor~ 30.0 -95.3
#> 2 2013 1 1 5 LGA IAH N24211 UA Geor~ 30.0 -95.3
#> 3 2013 1 1 5 JFK MIA N619AA AA Miam~ 25.8 -80.3
#> 4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA

12 - Relational Data and Joins SYS 2202 | Fall 2019 10/14

#> 5 2013 1 1 6 LGA ATL N668DN DL Hart~ 33.6 -84.4
#> 6 2013 1 1 5 EWR ORD N39463 UA Chic~ 42.0 -87.9
#> # ... with 3.368e+05 more rows, and 4 more variables: alt <int>, tz <dbl>,
#> # dst <chr>, tzone <chr>

Do you know why there are NA’s? What if we used inner_join() instead of left_join()? What
would happen to the NA’s?
inner_join(flights2, airports, c("dest" = "faa"))

Here we join to the origin instead of dest
#- join airports$faa to flights2$origin
left_join(flights2, airports, c("origin" = "faa"))
#> # A tibble: 336,776 x 15
#> year month day hour origin dest tailnum carrier name lat lon
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2013 1 1 5 EWR IAH N14228 UA Newa~ 40.7 -74.2
#> 2 2013 1 1 5 LGA IAH N24211 UA La G~ 40.8 -73.9
#> 3 2013 1 1 5 JFK MIA N619AA AA John~ 40.6 -73.8
#> 4 2013 1 1 5 JFK BQN N804JB B6 John~ 40.6 -73.8
#> 5 2013 1 1 6 LGA ATL N668DN DL La G~ 40.8 -73.9
#> 6 2013 1 1 5 EWR ORD N39463 UA Newa~ 40.7 -74.2
#> # ... with 3.368e+05 more rows, and 4 more variables: alt <int>, tz <dbl>,
#> # dst <chr>, tzone <chr>

2.1.2 Exercises

1. Compute the average delay by destination, then join on the airports data frame so you can show
the spatial distribution of delays. (We will learn about the map components later in the course).

#-- Get new table of avg delay with airport lon/lat coordinates
dest_delays =

flights %>%
group_by(dest) %>%
summarize(avg.delay = mean(arr_delay, na.rm=TRUE),

n.flights = n()) %>%
inner_join(airports, by=c('dest' = 'faa'))

#-- Plot the aiports: color by average delay, size by number of flights
ggplot(dest_delays, aes(x=lon, y=lat, size=n.flights, color=avg.delay)) +
geom_point() +
scale_size_area() +
scale_color_gradient2(low='#91bfdb', mid='#ffffbf', high='#fc8d59') + # color gradient
borders("state") + # add map outline
coord_quickmap(xlim=c(-125, -68), ylim=c(25, 50)) # mainland US only

25

30

35

40

45

50

−120 −110 −100 −90 −80 −70
lon

lat −20

0

20

40

avg.delay

n.flights

4000

8000

12000

16000

2. We saw that MLB (baseball) players were more likely to be born in some months than others. But what
about a player’s name? Do MLB baseball players have unusual names?

• The babynames package has a babynames dataset that gives popularity of US (first) names
by year.

• Calculate the proportion of names of MLB players for each year.
• Join the baseball and babyname tables to compare the proportions.
• Note the largest anomalies.

3. Is there a relationship between the age of a plane and its average delay?

12 - Relational Data and Joins SYS 2202 | Fall 2019 11/14

4. What weather conditions make it more likely to see a delay? Find the relationship between departure
delays (dep_delay) and the weather variables at the origin (dest).

12 - Relational Data and Joins SYS 2202 | Fall 2019 12/14

2.2 Filtering Joins (R4DS 13.5)

Filtering joins match observations in the same way as mutating joins, but affect the observations (rows), not
the variables. There are two types:

• semi_join(x, y) keeps all observations in x that have a match in y.
• anti_join(x, y) drops all observations in x that don’t have a match in y.

A semi-join connects two tables like a mutating join, but instead of adding new columns, only keeps the rows
in x that have a match in y.

An anti-join is the reverse, it keeps the rows in x that do not have a match in y.
knitr::include_graphics("figs/join-anti.png")

2.2.1 Your Turn: Joins

Your Turn #3 : Joins

1. What does anti_join(flights, airports, by = c("dest" = "faa")) tell
you? What does anti_join(airports, flights, by = c("faa" = "dest"))
tell you?

2. Find all the planes (tailnum) manufacturered by AIRBUS and flown by Delta.

http://r4ds.had.co.nz/relational-data.html#filtering-joins

12 - Relational Data and Joins SYS 2202 | Fall 2019 13/14

3 Join Problems (R4DS 13.6)

4 Set Operations (R4DS 13.7)

The final type of two-table verb is set operations. These expect the x and y inputs to have the same columns,
and treats the observations like sets:

• intersect(x, y): return only observations in both x and y
• union(x, y): return unique observations in x and y
• setdiff(x, y): return observations in x, but not in y.

5 SQL Correspondence

SQL is the inspiration for dplyr’s conventions, so the translation is straightforward:

Each two-table verb has a straightforward SQL equivalent:

dplyr SQL

inner_join(x, y,
by = "z")

SELECT *
FROM x
INNER
JOIN y
USING
(z)

left_join(x, y,
by = "z")

SELECT *
FROM x
LEFT
OUTER
JOIN y
USING
(z)

right_join(x, y,
by = "z")

SELECT *
FROM x
RIGHT
OUTER
JOIN y
USING
(z)

full_join(x, y,
by = "z")

SELECT *
FROM x
FULL
OUTER
JOIN y
USING
(z)

http://r4ds.had.co.nz/relational-data.html#join-problems
http://r4ds.had.co.nz/relational-data.html#set-operations

12 - Relational Data and Joins SYS 2202 | Fall 2019 14/14

dplyr SQL

semi_join() SELECT *
FROM x
WHERE
EXISTS
(SELECT
1 FROM y
WHERE
x.a =
y.a)

anti_join() SELECT *
FROM x
WHERE
NOT
EXISTS
(SELECT
1 FROM y
WHERE
x.a =
y.a)

intersect(x, y) SELECT *
FROM x
INTERSECT
SELECT *
FROM y

union(x, y) SELECT *
FROM x
UNION
SELECT *
FROM y

setdiff(x, y) SELECT *
FROM x
EXCEPT
SELECT *
FROM y

Note that “INNER” and “OUTER” are optional, and often omitted.

	Relational Data
	nycflights13
	Exercises
	Keys (R4DS 13.3)

	Joins
	Mutating joins (R4DS 13.4)
	Filtering Joins (R4DS 13.5)

	Join Problems (R4DS 13.6)
	Set Operations (R4DS 13.7)
	SQL Correspondence

