
04 - Data Transformation

04-transform.pdf

SYS 2202 | Fall 2019 1/46

Required Packages and Data

library(tidyverse)
library(nycflights13)

Remember, if you are getting the error:
> Error in library(nycflights13) : there is no
package called ‘nycflights13’

then you have not installed the nycflights13 on your computer. You
can do so by:

I Tools -> Install Packages... from RStudio.
I or, typing install.packages("nycflights13") in console or

SYS 2202 | Fall 2019 2/46

Practice

You need to practice to become proficient with the tools we are
covering. The best way to do this is start analyzing data that is
interesting to you. Here are some places:

I Many R packages have interesting data: lahman, gapminder,
acs

I https://www.springboard.com/blog/free-public-data-sets-data-
science-project/

I https://www.dataquest.io/blog/free-datasets-for-projects/

Look on-line and find something interests you. I can help you get the
data into R if necessary, just ask.

SYS 2202 | Fall 2019 3/46

https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.dataquest.io/blog/free-datasets-for-projects/

Data Transformation

SYS 2202 | Fall 2019 4/46

Working with data

When working with data you must:

1. Figure out what you want to do.

2. Precisely describe what you want to do in such a way that the
compute can understand it (i.e. program it).

3. Execute the program.

The dplyr package makes some of these steps fast and easy:

I By constraining your options, it simplifies how you can think about
common data manipulation tasks.

I It provides simple “verbs”, functions that correspond to the most
common data manipulation tasks, to help you translate those
thoughts into code.

I It uses efficient data storage backends, so you spend less time
waiting for the computer.

SYS 2202 | Fall 2019 5/46

nycflights13

To explore the basic data manipulation verbs of dplyr, we’ll use the
flights data frame from the nycflights13 package. This data
frame contains all 336,776 flights that departed from New York City in
2013. The data comes from the US Bureau of Transportation Statistics,
and is documented in ?nycflights13.

SYS 2202 | Fall 2019 6/46

http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0

nycflights13

#- Load the flights data from nycflights13 package
library(nycflights13)
flights
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

A tibble is a special data frame. See Chapter 10 of RDS for more details on the differences
between tibble and data.frame.

SYS 2202 | Fall 2019 7/46

http://r4ds.had.co.nz/tibbles.html

dyplr Package

SYS 2202 | Fall 2019 8/46

dyplr help

I Data Transformation Cheatsheet
I Introduction to the dplyr package

The functions in the dplyr package translate well to SQL functionality. In fact, you can run
dplyr queries on a SQL data base (https://db.rstudio.com/dplyr/) and bypass SQL altogether.
However, some employeers may want to know you have direct SQL experience. After learn-
ing dplyr, you will be able to pick up SQL very quickly. Here is a reference to help you
make the small step to direct SQL queries (https://db.rstudio.com/advanced/translation/).

SYS 2202 | Fall 2019 9/46

https://www.rstudio.com/resources/cheatsheets/#dplyr
https://dplyr.tidyverse.org/articles/dplyr.html
https://db.rstudio.com/dplyr/
https://db.rstudio.com/advanced/translation/

dplyr single table verbs

1. filter() and slice(): find/keep certain rows
2. arrange(): reorder rows
3. select(): find/keep certain columns

I rename() will change the column name
4. mutate(): add/create new variables

I transmute(): only return new variables

SYS 2202 | Fall 2019 10/46

dplyr single table verbs

All verbs work similarly:

1. The first argument is a data frame.

2. The subsequent arguments describe what to do with the data frame.
You can refer to columns in the data frame directly without using $.

3. The result is a new data frame.

Together these properties make it easy to chain together multiple
simple steps to achieve a complex result.

Again, the Data Transformation Cheatsheet is a handy reference.

SYS 2202 | Fall 2019 11/46

https://www.rstudio.com/resources/cheatsheets/#dplyr

Select rows with filter() and slice()

SYS 2202 | Fall 2019 12/46

Select rows by position with slice()

To select rows by position, use slice():
slice(flights, 5:8) # selects the 5th - 8th row
#> # A tibble: 4 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 554 600 -6 812
#> 2 2013 1 1 554 558 -4 740
#> 3 2013 1 1 555 600 -5 913
#> 4 2013 1 1 557 600 -3 709
#> # ... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
#> # time_hour <dttm>

SYS 2202 | Fall 2019 13/46

Select rows by values with filter()

filter() allows you to subset observations according to specific
criteria.

I The first argument is the name of the data frame.
I The second and subsequent arguments are the expressions that

filter the data frame (think and).
I For example, we can select all flights on January 1st with:
filter(flights, month == 1, day == 1)

Your Turn #1

1. Find all flights with a destination (dest) of Chicago O’Hare (‘ORD’).

2. Find all United (‘UA’) flights with a destination (dest) of Chicago
O’Hare (‘ORD’).

SYS 2202 | Fall 2019 14/46

Relational Operators for Numeric Vectors

R provides the standard suite of numeric comparison operators: >, >=,
<, <=, != (not equal), and == (equal).

Your Turn #2

1. Find all flights that departed (dep_time) after 8pm (20:00).

2. Find all United (‘UA’) flights that departed (dep_time) after 8pm
(20:00),
with a destination (dest) of Chicago O’Hare (‘ORD’).

SYS 2202 | Fall 2019 15/46

One equals or two?

When you’re starting out with R, the easiest mistake to make is to use
= instead of == when testing for equality. When this happens you’ll get
an error message with a hint:
filter(flights, month = 1)
#> `month` (`month = 1`) must not be named, do you need `==`?

Whenever you see this message, check for = instead of ==.

SYS 2202 | Fall 2019 16/46

Relational Operators for Character Vectors (and Factors)

For categorical vectors:

I == equal to
I != not equal to
I %in% element of set (use: x %in% set)
x = c("aa", "bb", "aa", "bb", "aa", "cc", "dd")
x == "aa"
#> [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE
x != "aa"
#> [1] FALSE TRUE FALSE TRUE FALSE TRUE TRUE
x %in% c("aa","bb")
#> [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE
!(x %in% c("aa","bb")) # x not in set
#> [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE

SYS 2202 | Fall 2019 17/46

Logical Operators

Multiple arguments to filter() are combined with “and”.
#- select flights with dest of BHM *and* December
filter(flights, dest=="BHM", month == 12)

To get more complicated expressions, you can use Boolean operators.
The | is read as “or”
#- select flights with Nov *or* Dec
filter(flights, month == 11 | month == 12)

#- dest of BHM *and* (Nov *or* Dec)
filter(flights, dest=="BHM", month == 11 | month == 12)

SYS 2202 | Fall 2019 18/46

Logical Dangers

Your Turn #3

Find all flights with destination of DCA or IAD.

SYS 2202 | Fall 2019 19/46

Logical Dangers

Beware of a common mistake:
filter(flights, month == 11 | 12)

Note the order isn’t like English. This expression doesn’t find on
months that equal 11 or 12. Instead it finds all months that equal 11 |
12, which is TRUE:
11 | 12
#> [1] TRUE

In a numeric context (like here), TRUE is interpreted as a 1, so this
finds all flights in January, not November or December.

SYS 2202 | Fall 2019 20/46

Values in a set

Instead of many OR statements, you can use the helpful %in%
shortcut:
filter(flights, month %in% c(11, 12))

Or between()
filter(flights, between(month, 11, 12))

The function between(x, left, right) is a shortcut for x >= left & x<= right
(inclusive).

SYS 2202 | Fall 2019 21/46

More Logical and Relational Operators

I I have compiled a list of some common logical and relational
operators

I Complete set of Boolean operations from the R for Data Science
book:

SYS 2202 | Fall 2019 22/46

lectures/04-logic-sets-control.html
lectures/04-logic-sets-control.html
http://r4ds.had.co.nz/transform.html
http://r4ds.had.co.nz/transform.html

Your Turn #4 : filter()

Find all the flights that:

a. Departed in July
b. That flew to Houston (IAH or HOU)
c. Departed in July and flew to Houston
d. Flew to Hou or Originated from ’JFK‘
e. That were delayed by more than two hours
f. That arrived more than two hours late, but didn’t leave late

g. Had an arrival time earlier than departure time

Understand how each variable is coded (e.g. the integer 1 = January, the integer 517 =
5:17am, etc.).

SYS 2202 | Fall 2019 23/46

Solutions

SYS 2202 | Fall 2019 24/46

Arranging (ordering) rows with arrange()

SYS 2202 | Fall 2019 25/46

Arrange rows with arrange()

I arrange() works similarly to filter() except that instead of
filtering or selecting rows, it reorders them.

I It takes a data frame, and a set of column names (or more
complicated expressions) to order by.

I If you provide more than one column name, each additional column
will be used to break ties in the values of preceding columns.

I Order by year, then month, then day:
arrange(flights, year, month, day)
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

SYS 2202 | Fall 2019 26/46

Descending Order

I By default, arrange() orders from smallest to largest
I Use desc() to order a column in descending order:
arrange(flights, desc(dep_time))
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 10 30 2400 2359 1 327
#> 2 2013 11 27 2400 2359 1 515
#> 3 2013 12 5 2400 2359 1 427
#> 4 2013 12 9 2400 2359 1 432
#> 5 2013 12 9 2400 2250 70 59
#> 6 2013 12 13 2400 2359 1 432
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

I This works on categorical data too (alphabetical order)
I This works on factors too (ordered by levels)

SYS 2202 | Fall 2019 27/46

Your Turn #5 : arrange()

a. Sort flights to find the most delayed flights
b. Sort flights to find the least delayed flights
c. Sort flights by destination and break ties by arrival delay
d. Sort flights to find highest average flight speed

(distance/air_time)

SYS 2202 | Fall 2019 28/46

Solutions

SYS 2202 | Fall 2019 29/46

Select columns with select()

SYS 2202 | Fall 2019 30/46

Select columns with select()

I It’s not uncommon to get datasets with hundreds or even thousands
of variables.

I In this case, the first challenge is often narrowing in on the variables
you’re actually interested in.

I select() allows you to rapidly zoom in on a useful subset using
operations based on the names or positions of the variables.

I Select columns by name
select(flights, year, month, day) # keep year, month, and day columns

I Select columns by position
select(flights, 1:3) # keep first 3 columns

SYS 2202 | Fall 2019 31/46

Other ways to select columns

I Deselect or drop columns using the - (minus) symbol
select(flights, -year, -month, -day) # keep all except year, month, day

select(flights, -(1:3)) # keep all except first 3 columns

I Select range of columns by name
Select all columns between year and day (inclusive)
select(flights, year:day)
Select all columns except those from year to day (inclusive)
select(flights, -(year:day))

SYS 2202 | Fall 2019 32/46

Yet more ways to select columns

There are a number of helper functions you can use within select():

I starts_with("abc"): matches names that begin with “abc”.

I ends_with("xyz"): matches names that end with “xyz”.

I contains("ijk"): matches name that contain “ijk”.

I matches("(.)\\1"): selects variables that match a regular
expression.
This one matches any variables that contain repeated characters.
You’ll learn more about regular expressions later in the course

I num_range("x", 1:3) matches x1, x2 and x3.

I one_of(x) selects any names in the vector x

See ?select and Data Transformation Cheatsheet for more details.

SYS 2202 | Fall 2019 33/46

https://www.rstudio.com/resources/cheatsheets/#dplyr

Related functionality: rename()

Use rename() function to rename a column
rename(flights, tail_number = tailnum)
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tail_number <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

I Note: this returns a full data frame. It does not modify the original.
I To apply the renaming, use flights = rename(flights, tail_number =

tailnum)

SYS 2202 | Fall 2019 34/46

Re-arrange Columns

I The column order can be rearranged with select(). This is
especially helpful for viewing on the screen/console

select(flights, distance, air_time, origin, dest, carrier)
#> # A tibble: 336,776 x 5
#> distance air_time origin dest carrier
#> <dbl> <dbl> <chr> <chr> <chr>
#> 1 1400 227 EWR IAH UA
#> 2 1416 227 LGA IAH UA
#> 3 1089 160 JFK MIA AA
#> 4 1576 183 JFK BQN B6
#> 5 762 116 LGA ATL DL
#> 6 719 150 EWR ORD UA
#> # ... with 3.368e+05 more rows

SYS 2202 | Fall 2019 35/46

Renaming Columns with select()

The select() function also allows renaming on the fly
select(flights, dist=distance,

`what time is it?`=air_time,
new_name=carrier)

#> # A tibble: 336,776 x 3
#> dist `what time is it?` new_name
#> <dbl> <dbl> <chr>
#> 1 1400 227 UA
#> 2 1416 227 UA
#> 3 1089 160 AA
#> 4 1576 183 B6
#> 5 762 116 DL
#> 6 719 150 UA
#> # ... with 3.368e+05 more rows

Hint: If you really, really want to use spaces or strange characters in column names, use
back-ticks (shown above)

SYS 2202 | Fall 2019 36/46

Add or modify variables with mutate()

SYS 2202 | Fall 2019 37/46

Add or modify variables with mutate()

I The job of mutate() is to add new (or modify) columns that are
functions of existing columns.

I mutate() always adds the new columns at the end of the data
frame in order created

flights_sml <- select(flights, # reduce variables
year:day,
ends_with("delay"),
distance,
air_time

)

mutate(flights_sml,
gain = arr_delay - dep_delay, # add gain variable
speed = distance / (air_time / 60) # add speed variable (in mph)

)
#> # A tibble: 336,776 x 9
#> year month day dep_delay arr_delay distance air_time gain speed
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227 9 370.
#> 2 2013 1 1 4 20 1416 227 16 374.
#> 3 2013 1 1 2 33 1089 160 31 408.
#> 4 2013 1 1 -1 -18 1576 183 -17 517.
#> 5 2013 1 1 -6 -25 762 116 -19 394.
#> 6 2013 1 1 -4 12 719 150 16 288.
#> # ... with 3.368e+05 more rows

SYS 2202 | Fall 2019 38/46

mutate() function

I Note that you can refer to columns that you’ve just created:
mutate(flights_sml,

gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours # used the newly created variables

)
#> # A tibble: 336,776 x 10
#> year month day dep_delay arr_delay distance air_time gain hours
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227 9 3.78
#> 2 2013 1 1 4 20 1416 227 16 3.78
#> 3 2013 1 1 2 33 1089 160 31 2.67
#> 4 2013 1 1 -1 -18 1576 183 -17 3.05
#> 5 2013 1 1 -6 -25 762 116 -19 1.93
#> 6 2013 1 1 -4 12 719 150 16 2.5
#> # ... with 3.368e+05 more rows, and 1 more variable: gain_per_hour <dbl>

mutate() is also used to modify the columns (e.g. recode() or change data type). E.g.,
mutate(flights, flight = as.character(flight) will change flight column
to a character.

SYS 2202 | Fall 2019 39/46

transmute() to only keep new columns

If you only want to keep the newly created columns, use
transmute() instead of mutate() + select()
transmute(flights,

gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours

)
#> # A tibble: 336,776 x 3
#> gain hours gain_per_hour
#> <dbl> <dbl> <dbl>
#> 1 9 3.78 2.38
#> 2 16 3.78 4.23
#> 3 31 2.67 11.6
#> 4 -17 3.05 -5.57
#> 5 -19 1.93 -9.83
#> 6 16 2.5 6.4
#> # ... with 3.368e+05 more rows

SYS 2202 | Fall 2019 40/46

Using aggregate functions in mutate()

I For statistical analysis, we often want to compare individual values
to aggregates

I E.g., create the Z score for the distance column
transmute(flights,

Zdist = (distance - mean(distance))/sd(distance))
#> # A tibble: 336,776 x 1
#> Zdist
#> <dbl>
#> 1 0.491
#> 2 0.513
#> 3 0.0669
#> 4 0.731
#> 5 -0.379
#> 6 -0.438
#> # ... with 3.368e+05 more rows

For each element in the distance column, it subtracts the column mean and divides by the
column standard deviation.

SYS 2202 | Fall 2019 41/46

Your Turn #6 : mutate()

a. Create a new data frame that contains only the flights that were less
than 1000 miles (distance). Keep only the columns: dep_delay,
arr_delay, origin, dest, air_time, and distance.

b. Add the Z -score for departure delays to the new data frame

c. Convert the departure and arrival delays into hours

d. Return only the average flight speed (in mph)

e. Calculate the mean speed

SYS 2202 | Fall 2019 42/46

Solutions

SYS 2202 | Fall 2019 43/46

Other dplyr functions

SYS 2202 | Fall 2019 44/46

Honorable Mentions: Data frame functions

I distinct(): retain unique/distinct rows
I sample_n() and sample_frac(): randomly sample rows
I top_n() / top_frac(): selects and orders the top n rows

according to wt
I add_column() add new column in particular position
I add_row() adds new row(s) to the table

SYS 2202 | Fall 2019 45/46

Honorable Mentions: Dealing with NA’s (missing values)

Dealing with missing values (NA) is important, but tedious. These can
help
I na_if(x, y) converts the y valued elements in x to NA

x = c(1, 2, -99, 5, 5, -99)
na_if(x, -99) # replace -99 with NA
#> [1] 1 2 NA 5 5 NA

I coalesce(x, y) replaces the NA in x with y

x = c(1, 2, NA, 5, 5, NA)
coalesce(x, 0) # replace NA with 0
#> [1] 1 2 0 5 5 0

These two functions can be used in mutate() to modify columns.

SYS 2202 | Fall 2019 46/46

	Data Transformation
	dyplr Package
	Select rows with filter() and slice()
	Arranging (ordering) rows with arrange()
	Select columns with select()
	Add or modify variables with mutate()
	Other dplyr functions

