
02 - R and RStudio

02-Rintro.pdf

SYS 2202 | Fall 2019 1/36

Intro

SYS 2202 | Fall 2019 2/36

Installing R and RStudio

If you haven’t already done so, install R and RStudio now:
I R (http://cran.r-project.org/)
I R Studio (http://www.rstudio.com/products/rstudio/download/)

And start up RStudio.

SYS 2202 | Fall 2019 3/36

http://cran.r-project.org/
http://www.rstudio.com/products/rstudio/download/

The Data Analytics Process

http://r4ds/diagrams/data-science.png/

SYS 2202 | Fall 2019 4/36

http://r4ds/diagrams/data-science.png/

Details

Explore

Program

Wrangle

Communicate

http://r4ds/diagrams/

SYS 2202 | Fall 2019 5/36

http://r4ds/diagrams/

RStudio

SYS 2202 | Fall 2019 6/36

RStudio IDE

The RStudio IDE provides four “panes”.
There are two primary panes:
I Console: Where you run “live” R code.
I Source: The editor where you can write

scripts to save (for reproducibility).

The two other panes will show:
I Plots
I Help: Documentation for R functions
I Environment: the R objects you have

created (also called Workspace)
I History: list of all the R code that is run in

the console.
I . . . (many other things)

SYS 2202 | Fall 2019 7/36

Customizing the Rstudio IDE

The RStudio IDE can be customized:

I Tools -> Global Options ...

Description of the options can be found here: http://support.
rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio

Under General:
I Uncheck “Restore .RData into workspace at startup”
I Save workspace to .RData on exit to Never

SYS 2202 | Fall 2019 8/36

http://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio
http://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio

R Projects

I It’s good practice to keep all your files associated with a
project in one place (data, scripts, figures, reports, etc.).

I RStudio facilitates this with Projects
I Each Project has its own working directory, workspace, history,

and source documents

SYS 2202 | Fall 2019 9/36

R Project Details

I When a new project is created, RStudio:
I Creates a project file (with an .Rproj extension) within the project

directory. This file contains various project options and can also
be used as a shortcut for opening the project directly from the
filesystem.

I Creates a hidden directory (named .Rproj.user) where
project-specific temporary files (e.g. auto-saved source
documents, window-state, etc.) are stored.

I Loads the project into RStudio and display its name in the
Projects toolbar (which is located on the far right side of the main
toolbar).

RStudio documentation for Projects: http://support.rstudio.com/hc/en-us/
articles/200526207-Using-Projects

SYS 2202 | Fall 2019 10/36

http://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
http://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

Your Turn #1 : Create a R Project

Create a new R Project for this class by clicking on drop-
down at top right section of RStudio.
I It gives you the option to start a new directory (i.e.,

folder)
I Avoid using spaces in the project name (e.g., SYS2202,

SYS-2202, SYS_2202)
I I usually create projects in google drive or dropbox so I

can access the files from multiple computers

SYS 2202 | Fall 2019 11/36

Using RStudio: Console Pane

Go to the console pane and let’s do some math.

5+6-1
#> [1] 10

Save the results as an object named x

x = 5+6-1

To see the value of x, just enter x at the prompt

x
#> [1] 10

Note: Most resources for R will use <- (the two symbols < and -) instead of = to
assign x the numeric value of 5+6-1.

SYS 2202 | Fall 2019 12/36

R Variables

Make another object y and add it to x

y = 90
x + y
#> [1] 100

We can assign multiple variables to the same value

a = b = 0

a
#> [1] 0
b
#> [1] 0

SYS 2202 | Fall 2019 13/36

Using RStudio: Environment (Workspace) Tab

We can look at all the variables in our workspace by going to the
Environment tab (upper right pane on my configuration).

Or, type ls() for a list in the console:

ls()
#> [1] "a" "b" "course_url" "params" "x"
#> [6] "y"

SYS 2202 | Fall 2019 14/36

R Packages

I Contributed R Packages are what makes R so great.
I An R package can contain: R functions, data, help pages,

vignettes, non-R code (e.g., C++, Fortran)
I The Base R distribution actually consists of 14 packages
I There are 15 Recommended packages that come shipped

with all binary distributions.
I And over 12,000 additional packages
I We will use several packages for this class; good thing they

are so simple to use!

SYS 2202 | Fall 2019 15/36

http://cran.us.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R
http://cran.us.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-from-CRAN

Using R Packages

It takes two steps to use the functions and data in an R package

1. Install the package
I i.e. download the package to your computer
I this only needs to be done one time
I install.packages()

2. Load the package
I i.e. tell R to look for the package functions and/or data
I this needs to be done every time R is started (and you want to

use the package)
I library()

SYS 2202 | Fall 2019 16/36

R Package Installation

1. Install the package on your computer
I Tools -> install.packages...
I Or, in the console type: install.packages(pkgnames)
I Packages only need to be installed one time on a computer; do

not re-install

2. Then, load into workspace to have access to all functions,
datasets, and help files
I Click on Packages tab and check boxes
I Or, type library(pkgname) or require(pkgname)

3. Packages can be updated to ensure latest functionality and
bug fixes
I Tools -> Check for Package Updates...
I Or, in console update.packages()
I This just re-installs and writes over the old package

If you don’t have root permission, then use the lib= argument.

SYS 2202 | Fall 2019 17/36

Installing and Loading Packages

Your Turn #2

1. Install the package tidyverse
2. Load the packages into the workspace
3. Did you get any warnings? Make a note of these.
4. Ensure you have loaded it correctly:

I Type ?mpg in the console to see the help documentation
for the data mpg from the ggplot2 package.

I Type ?ggplot in the console to see the help
documentation for the function ggplot()

SYS 2202 | Fall 2019 18/36

Note on tidyverse package

I The tidyverse package is really just a wrapper to load
several related R packages
I ggplot2 for graphics
I dplyr for data manipulation
I tidyr for getting data into tidy form
I readr for loading in data
I tibble for improved data frames
I purrr for functional programming

I This provides a nice shortcut to load all of these packages
with library(tidyverse) instead of each separately:

#- the hard way
library(ggplot2)
library(dplyr)
library(tidyr)
library(readr)
library(tibble)
library(purrr)

SYS 2202 | Fall 2019 19/36

Function conflicts

I Sometime you will come across functions from different packages that
have the same name
I For example, filter from package:dplyr and filter from

package:stats
I If both packages are loaded, the function in the package that was

loaded last will be invoked when calling the function.
I The other functions are said to be masked.

I E.g., loading dplyr:

Attaching package: 'dplyr'
The following object is masked from 'package:stats':

filter, lag

I If you want a specific function, add the package name separated by
two colons

?filter
?stats::filter
?dplyr::filter

SYS 2202 | Fall 2019 20/36

Note on using library()

I Packages only need to be installed (install.packages())
one time on your computer

I But packages need to be loaded (library()) every time
you start a new R session

SYS 2202 | Fall 2019 21/36

Using RStudio: Source Pane

I The source pane can save you lots of pain.
I This is where you will do most of your work.
I By executing commands from within the source editor rather

than the console it is much easier to reproduce sequences of
commands as well as package them for re-use as a function.

I Scripts can be saved for later use or sharing.

RStudio documentation: http://support.rstudio.com/hc/en-us/articles/
200484448-Editing-and-Executing-Code

SYS 2202 | Fall 2019 22/36

http://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
http://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code

Your Turn #3

1. Create a new R script
I File -> New File -> R Script

2. Copy and paste the following code (to make a scatter plot)
into the new R script

#- Load the fuel economy data
library(tidyverse) # note: mpg data is from ggplot2 package
data(mpg) # loads the data (not necessary, but helpful

to specify)

#- Make plot
ggplot(data=mpg) +
geom_point(aes(x=displ, y=hwy))

#- Save plot
ggsave("mpg.pdf")

#- Save data
write_csv(mpg, path="mpg.csv")

SYS 2202 | Fall 2019 23/36

Your Turn #4

3. Run the code in the console (Highlight all code and
Ctrl+Enter)

4. Open the plot (mpg.pdf) in a pdf viewer and open the data
(mpg.csv) in a spreadsheet program

I where did you find these files?

5. Add the following properties to geom_point() and re-run:

I Map the color of the points to the class (color=class)
I Map the size of the points to the number of cylinders (hint:

size=cyl)

SYS 2202 | Fall 2019 24/36

Scripts for interactive analysis and reproducibility

I Working in the source pane instead of the console will save
you time as you interact with the data.

I For example, you now have the code to produce a nice scatter
plot with control for point size and colors.

I Working with a script will help with Reproducible Data
Analysis

I Dangers of Point and Click Approach
I The # symbol marks a comment. The rest of the line is

commented (not read by R).

y = 10 # set y equal to 10
y = 5 # set y equal to 5
y = 1 # set y equal to 1 (Note: this will not be run by R)
y
#> [1] 5

SYS 2202 | Fall 2019 25/36

http://www.johndcook.com/blog/reproducible/
http://www.johndcook.com/blog/reproducible/
http://kc.vanderbilt.edu/quant/Seminar/ReproducibleAnalyses.pdf

Your Turn #5

Save your plot script in the project directory.

1. Create a subdirectory R to keep all your R scripts.
2. Use the extension (.R) for R scripts

I For example: mpg-plot.R
3. Save mpg-plot.R in the R subdirectory
4. (Optional) Create subdirectories data and figures. Modify

the script to add the components to the correct subdirectory
I ggsave("figures/mpg.pdf")
I write_csv(mpg, path="data/mpg.csv")

SYS 2202 | Fall 2019 26/36

History

I RStudio keeps track of everything entered into the console in the
History tab (top right pane in my config)

I Here you can send lines of code to the console or source
I When working in the console, you can also use Up-arrow to scroll

through recent commands
I Or type the first few characters of your command and use

Ctrl+Up-arrow
I Example: Type gg, then Ctrl+Up-arrow to see a list of your

recent commands that started with “gg”
I It is a good idea to save anything from the history that you may need

again in a script.
I If you are working under an R Project, then your history should save

automatically and be available next time to start up that project.

RStudio documentation: http://support.rstudio.com/hc/en-us/articles/
200526217-Command-History

SYS 2202 | Fall 2019 27/36

http://support.rstudio.com/hc/en-us/articles/200526217-Command-History
http://support.rstudio.com/hc/en-us/articles/200526217-Command-History

RStudio Keyboard Shortcuts

I You can improve your productivity by learning keyboard shortcuts
I In editor:

I Ctrl+Enter: send code to console
I (Command+Enter on Mac)

I Ctrl+2: move cursor to console
I Ctrl+a: select all

I In console

I Up_arrow: retrieve previous command
I Ctrl+up arrow: search commands
I Ctrl+1: move cursor to editor

I Tab complete

I start typing a variable or function name and then Tab
I For functions, enter function name then parenthesis “(” then Tab

and it will show you possible function arguments.

mean(+ Tab

I We will explore this more when we introduce functions
SYS 2202 | Fall 2019 28/36

RStudio Help Pages

I Check out Help tab
I RStudio Main Help Page
I cheat sheets
I RStudio IDE
I Keyboard Shortcuts

I Or Alt+Shift+K
I Getting R Help

SYS 2202 | Fall 2019 29/36

http://support.rstudio.com/hc/en-us/categories/200035113-Documentation
http://www.rstudio.com/resources/cheatsheets/
http://support.rstudio.com/hc/en-us/sections/200107586-Using-RStudio
http://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts
http://support.rstudio.com/hc/en-us/articles/200552336-Getting-Help-with-R

Using R

SYS 2202 | Fall 2019 30/36

R Resources

There is no shortage of free resources for learning R.

The official reference list is here:
http://cran.r-project.org/other-docs.html

I Look for options that are more recent. E.g.,
I Base R Cheatsheet
I http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf
I http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

SYS 2202 | Fall 2019 31/36

http://cran.r-project.org/other-docs.html
https://www.rstudio.com/wp-content/uploads/2016/10/r-cheat-sheet-3.pdf
http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf
http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

Birth Month Hypothesis

SYS 2202 | Fall 2019 32/36

Birth Month and Performance

Does the month of your birth impact your chances of success?

Several researchers have found
evidence to support this!
I Interview with Gladwell
I Australia

SYS 2202 | Fall 2019 33/36

http://www.espn.com/espn/page2/story?page=merron/081208
https://www.reuters.com/article/us-birthdays-idUSTRE6121KK20100203

Birth Months and Baseball

The Lahman package has lots of baseball data.

Your Turn #6

1. Install the Lahman R package
2. Load the Lahman package and the Master data

library(Lahman)
data(Master)

3. Take a peek (or glimpse) at the Master data. Does it
contain what we need to test the birth month
hypothesis?

SYS 2202 | Fall 2019 34/36

Visualizing the Data

Your Turn #7

1. What calculations do we need to perform?
2. What type of plot should we make?

SYS 2202 | Fall 2019 35/36

Testing the hypothesis

Your Turn #8

1. How should we test the hypothesis?
2. Any other considerations before we make a conclusion?

SYS 2202 | Fall 2019 36/36

	Intro
	RStudio
	Using R
	Birth Month Hypothesis

