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Density Review

ST 697 | Fall 2017 2/49



Continuous Random Variables
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Discrete Random Variables
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Empirical CDF and PDF
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Review of Parametric Density Estimation

1. Choose parametric distribution family
2. Estimate parameters

I Method of Moments
I Maximum Likelihood
I Bayesian (also choose prior)
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Density Histograms
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Density Histograms

Histograms estimate the density as a piecewise constant
function.

f̂(x) =
J∑

j=1
bj(x) θ̂j

where bj(x) = 1(x ∈ binj)/hj and

I binj = [tj , tj+1)
I t1 < t2 < . . . < tJ are the break points for the bins
I hj = [tj , tj+1) = tj+1 − tj is the bin width of bin j

I bin widths do not have to be equal

I binj ∩ bink = ∅

Some slight adjustments need to be made for multivariate
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Estimating Density Histograms

I Observe data D = {X1, X2, . . . , Xn}
I Denote nj as the number of observations in bin j
I θ̂j = p̂j = nj/n is the usual (MLE) estimate
I Shrinkage Estimator

θ̂j =
(

n

n+A

)
p̂j +

(
A

n+A

)
uj

= πp̂j + (1− π)uj
where

I A (number of pseudo observations in bin j)
I uj = hj/

∑
k hk (uniform prior)

I 0 ≤ π ≤ 1 (alternative representation)

What are constraints on {θj} that ensure f̂ is a proper density?
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Regular Histogram
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Histogram with Shrinkage
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German Credit Data

http://archive.ics.uci.edu/ml/machine-learning-databases/
statlog/german/german.data

url = "http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data"
data = read.delim(url,sep=" ",header=FALSE)

germanCredit = data[,-21]
Y = data[,21]
G = ifelse(Y==1, "good", "bad")
good = (G == "good")
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Histogram Density Ratio: German Credit Data
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Binning

The bins of a histogram can be of fixed width hj = h or variable
width.

I Smaller bins have less bias, but more variance
I Shrinkage lowers variance, but increases bias
I Percentile binning set the bin width according to the number

of observations

Creating J bins {tj : j = 1, 2, . . . , J + 1}:

= {t1, h, J} (equal bin width of width h)
= {t1, tJ+1, J} (equal bin width h = (tJ+1 − t1)/J)

= {tj : tj = F−1
n (j/J)} (percentile binning)
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Binning Example

Regular Binning
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Binning Example: Basis and Parameters

Fixed Binning Basis Functions
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Optimal Bin Width

The optimal bin widths for density estimation may not be the
same as the optimal bin widths for finding the log density ratio
(like we need for naive Bayes or anomaly detection).

I If we are interested in the log density ratio, should we use the
same binning?

I What if unbalanced classes?
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Histogram Bin Width: German Credit Data

J = 10 Bins
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Histogram Bin Width: German Credit Data

J = 20 Bins

10 20 30 40 50 60 70

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

x2

de
ns

ity

Fixed bin width

10 20 30 40 50 60 70

−3

−2

−1

0

1

2

3

lo
g(

f1
/f0

)

10 20 30 40 50 60 70

−0.10

−0.05

0.00

0.05

0.10

x2

de
ns

ity

Percentile bin width

10 20 30 40 50 60 70

−3

−2

−1

0

1

2

3

lo
g(

f1
/f0

)

ST 697 | Fall 2017 19/49



Histogram Bin Width: German Credit Data

J = 5 Bins
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Review of Histograms

I We have considered regular and percentile histograms for
nonparametric density estimation

I Histograms can be thought of as a local method of density
estimation.
I Points are local to each other if they fall in the same bin
I Local is determined by bin breaks

I But this has some issues:
I Some observations “closer" to observations in a neighboring bin
I Estimate is not smooth (but true density can often be assumed

smooth)
I Bin shifts can have a big influence on the resulting density

I Do parametric approaches estimate a density locally?
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Histogram Neighborhood

Consider estimating the density at a location x0

I For a regular histogram (with bin width h), the MLE density
is

f̂(x0) = nj

nh
for x0 ∈ binj

which is a function of the number of observations in bin j.
I But how do you feel if x0 is close to the boundary?
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Buffalo Snowfall (1910-1973): Bin width

Scott (1992) Multivariate Density Estimation, Chapter 4
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Buffalo Snowfall (1910-1973): Sensitivity to bin shifts

Scott (1992) Multivariate Density Estimation, Chapter 4
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Kernel Density Estimation
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Local Density Estimation - Moving Window

Consider again estimating the density at a location x0 - Regular
Histogram (with midpoints mj and bin width h)

f̂(x0) = 1
n

n∑
i=1

1

(
|xi −mj | ≤ h

2

)
h

for x0 ∈ Bj

I Consider a moving window approach

f̂(x0) = 1
n

n∑
i=1

1

(
|xi − x0| ≤ h

2

)
h

This gives a more pleasing definition of local by centering a
bin at x0.

I Equivalently this estimates the derivative of ECDF

f̂(x0) = Fn(x0 + h/2)− Fn(x0 − h/2)
h
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Uniform Kernel

Uniform Kernel
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Kernel Density Estimation

I The moving window approach looks better than a histogram with
the same bin width, but it is still not smooth

I Instead of giving every observation in the window the same
weight, we can assign a weight according to its distance from x0
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Gaussian Kernel

Gaussian Kernel
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Kernel Density Estimation

I More generally, the weights Kh(u) = h−1K
(

u
h

)
are called

kernel functions
I Thus, a kernel density estimator is of the form

f̂(x0) = 1
n

n∑
i=1

Kh(xi − x0)

where the smoothing parameter h is called the bandwidth
and controls how fast the weights decay as a function from
x0

I In R, density() function uses a bandwidth (bw argument)
that is the standard deviation of the kernel
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Kernel Properties

A kernel is usually considered to be a symmetric probability
density function:

I Kh(u) ≥ 0 (non-negative)
I
∫
Kh(u) du = 1 (integrates to one)

I Kh(u) = Kh(−u) (symmetric about 0)
I Notice that if the kernel has compact support, so does the

resulting density estimate
I The Gaussian kernel is the most popular, but has infinite

support
I The is good when the true density has infinite support
I However, this requires more computation
I But easier to calculate properties (e.g., bandwidth selection)
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Popular Kernels
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Bandwidth

I The bandwidth parameter, h controls the amount of smoothing
I What happens when h ↑ ∞?
I What happens when h ↓ 0?
I The choice of bandwidth is much more important than the choice

of kernel
I There is no standard representation of the bandwidth parameter
h

I In R, density() uses two arguments to set the bandwidth: bw is
the standard deviation of the kernel, and width is the length of the
support of the kernel

I The two are very different so check carefully what an author is using in
their definition of bandwidth
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Bandwidth Effects
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Another Perspectives

I We have described KDE as taking a local density around
location x0

I An alternative perspective is to view KDE as an n component
mixture model with mixture weights of 1/n

f̂(x) = 1
n

n∑
i=1

Kh(xi − x)

=
n∑

j=1

1
n
fi(x)

(
fi(x) = Kh(xi − x)

)

I Or in a basis function representation

f̂(x) =
n∑

j=1
θj bi(x)

(
θj = 1

n
, bi(x) = Kh(xi − x)

)
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Component Kernels

f̂(x) = 1
n

n∑
i=1

Kh(xi − x)
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Kernel Based Density Ratio

Using kernel density estimation (KDE), the density ratio useful
for naive Bayes, etc. becomes

f1(x)
f0(x)=̂ f̂1(x)

f̂0(x)

=
1

n1

∑n1
i=1Kh1(xi − x)

1
n0

∑n0
j=1Kh0(xj − x)
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KDE: German Credit Data
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Edge Effects

Sometimes there are known boundaries in the data (e.g., the
amount of rainfall cannot be negative). Here are some options:

1. Do nothing - as long as not many events are near the
boundary and the bandwidth is small, this may not be too
problematic. However, it will lead to an increased bias
around the boundaries.

2. Transform the data (e.g., x′ = log(x)), estimate the density
is the transformed space, then transform back

3. Use an edge correction technique
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Edge Correction (1)

The simplest approach requires a modification of the kernels
near the boundary. Let S = [a, b].

I Recall that
∫ b

a Kh(xi − x) dx should be 1 for every i.
I But near a boundary

∫ b
a Kh(xi − x) dx 6= 1

I Denote wh(xi) =
∫ b

a Kh(xi − x) dx
I The resulting edge corrected KDE equation becomes

f̂(x) = 1
n

n∑
i=1

wh(xi)−1Kh(xi − x)
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Edge Correction (2)

Another approach corrects the kernel for each particular x

I Denote wh(x) =
∫ b

a Kh(u− x) du
I The resulting edge corrected KDE equation becomes

f̂(x) = 1
n

n∑
i=1

wh(x)−1Kh(xi − x)

I This approach is not guaranteed to integrate to 1, but for
some problems this is not a major concern
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Adaptive Kernels

Up to this point, we have considered fixed bandwidths. But what
if we let the bandwidth vary? There are two main approaches:

I Balloon Estimator

f̂(x) = 1
n

n∑
i=1

Kh(x)(xi − x)

= 1
nh(x)

n∑
i=1

K

(
xi − x
h(x)

)
I Sample Point Estimator

f̂(x) = 1
n

n∑
i=1

Kh(xi)(xi − x)

= 1
n

n∑
i=1

h(xi)−1K

(
xi − x
h(xi)

)
\end{frame}
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k-Nearest Neighbor Density Approach

Like what we discussed for percentile binning, we can estimate
the density from the size of the window containing the k nearest
observations.

f̂k(x) = k

nVk(x)
where Vk(x) is the volume of a neighborhood that contains the
k-nearest neighbors.

I This is an adaptive version of the moving window (uniform
kernel) approach

I Probably won’t integrate to 1
I It is also possible to use the k-NN distance as a way to

select an adaptive bandwidth h(x).
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Multivariate Density Estimation

1. Multivariate kernels
I (e.g., K(u) = N(0,Σ))

f̂(x) = 1
(2π)d/2|Σ|1/2n

n∑
i=1

exp
(
−1

2(x− xi)TΣ−1(x− xi)
)

I Let Σ = h2A where |A| = 1, thus |Σ| = h2d

f̂(x) = 1
(2π)d/2hdn

n∑
i=1

exp
(
−1

2(x− xi)TA−1(x− xi)
)

2. Product Kernels (A = Id)

f̂(x) = 1
n

n∑
i=1

 d∏
j=1

Khj
(xj − xij)


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Mixture Models

Mixture models offer a flexible compromise between kernel
density and parametric methods.

I A mixture model is a mixture of densities

f(x) =
p∑

j=1
πjgj(x|ξj)

where
I 0 ≤ πj ≤ 1 and

∑p
j=1 πj are the mixing proportions

I gj(x|ξj) are the component densities

I This idea is behind model-based clustering (ST 640), radial
basis functions (ESL 6.7), etc.

I Usually the parameters θj and weights πj have to be
estimated (EM algorithm shows up here)
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Kernels, Mixtures, and Splines

All of these methods can be written:

f(x) =
J∑

j=1
bj(x)θj

I For KDE:
I J = n, bj(x) = Kh(x− xj), θj = 1/n (bw h estimated)

I For Mixture Models:
I bj(x) = gj(x|ξj), θj = πj (J, ξj , πj estimated)

I B-splines
I bj(x) is a B-spline, (θj , and maybe J and knots, estimated)
I Note: For density estimation, log f(x) =

∑J
j=1 bj(x)θj may

be easier to estimate
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Kernel Regression
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Other Issues

I One major problem with KDE and kernel regression (and
k-NN) is that all of training data must be stored in memory.

I For large data, this is unreasonable

I Multi-dimensional kernels are not very good for high
dimensions (unless simplified by using product kernels)

I But temporal kernels good for adaptive procedures (e.g.,
only remember most recent observations)

I Think about what EWMA is doing
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Smoothing for Categorical Data
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