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Model Complexity

Models can be of varying complexity:

I number of parameters (polynomials, interactions)
I penalty λ or constraint (t) for regularized models
I neighborhood size
I number of trees, tree depth
I etc. (we will cover more models later in course)

Highly adaptable model families can accommodate complex
relationships, but easily overemphasize patterns that are not
reproducible (e.g. noise or statistical fluctuation)

Goal is to be flexible (complex) enough to find reproducible (true)
structure, but not overfit
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Tuning parameters

Tuning parameters are the “control knobs" that are not directly
estimated from data. It may be better to refer to these as
complexity parameters.

These usually are connected to the flexibility/complexity of a
model. E.g., the λ in lasso and ridge are tuning parameters

I Given the value of the tuning parameter, we often can
estimate the other parameters from the data (e.g., β̂)
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Usual Set-up

Optimization function: J(θ, ω) = `(θ) + Pen(ω, θ)

I θ are model parameters
I ω are tuning parameters

Example: Elastic Net Regression

`(θ) = 1
2

n∑
i=1

(yi − xT
i θ)2

Pen(ω, θ) = λ

(1− α)
2

p∑
j=1

θ2
j + α

p∑
j=1
|θj |



I ω = (λ, α) (usual notation of θ = β)
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Usual Set-up

Optimization function: J(θ, ω) = `(θ) + Pen(ω, θ)

I θ are model parameters
I ω are tuning parameters

Estimate model parameters given the tuning parameter(s) ω:

θ̂(ω) = arg min
θ

J(θ, ω)

But how to pick the optimal model complexity, ω?
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Predictive Performance

Because our focus is on predictive performance (not
interpretation or inference), the optimal tuning parameter(s) is
the value(s) that minimizes the expected prediction error (PE):

EPE(ω) = E[PE(ω)] = EX̃,Ỹ [`(Ỹ , m̂ω(X̃))]

where `() is the loss function (e.g. RSS), and X̃, Ỹ are drawn
from the same distribution (hopefully) as the sample data.
m̂ω(x) = mω(x; θ̂(D)) is the prediction function with a given
tuning parameter ω

Ideally, we want to pick tuning parameter(s) ω to minimize EPE

ωopt = arg min
ω

EPE(ω)
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Training Error

There are a few ways to estimate EPE. A not very good way is to
use the training error (TE):

TE(ω,D) = 1
n

n∑
i=1

`(yi, m̂ω(xi))

where D = {(xi, yi)}ni=1 is the training data.

And use the ω that minimizes the training error:

ω∗ = arg min
ω

TE(ω,D)

I Which will always overfit (as long as f is flexible enough)
I Why?
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Training Error vs. Testing Error (ESL Fig 7.1)
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Model Selection and Assessment

I Model selection: estimating the performance of different
models in order to choose the best one.

I Model assessment: having chosen a final model,
estimating its prediction error on new data (i.e., estimating
EPE for final model).
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Train/Validate/Test

If it were possible to have lots of data (all from the same
distribution), then we would split up the data into three pieces:

Train Test/
Select Evaluate

I Train: Estimate model parameters θ (for given tuning ω)
I Test/Select: Choose optimal tuning parameters ω (i.e.,

model selection step)
I Evaluate: Estimate EPE (i.e., final model assessment)

1. What estimate suffers where there is not enough data in
each group?

2. Is the performance of a model on the test data reflective of
its performance on the evaluation data? When/Why do we
need evaluation data?
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Note on definitions

The ESL text (pg. 222) (and many others) use the following
notation: training, validation, test.

Whereas I replaced Validate with Test and Test with Evaluate.

We usually talk about performance on a test set, and that is what
we do in phase 2. The last step, Evaluation, is to get a true
sense of how well the final model will do on new data (since the
test set performance will be over-optimistic).

I But this historical nomenclature is where cross-validation
comes from
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Model Selection

The goal of model selection is to pick the model that will provide
the best predictive performance on test data (i.e, model with
smallest EPE).

There are three main approaches to estimating the predictive
performance (EPE) of a model:

1. Predict on hold-out test data
2. Make a mathematical adjustment to the training error that

better estimates the test error
3. resampling methods (cross-validation, bootstrap)
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Hold out set

Set aside some data in a test set Dtest and consider:

PE(ω,Dtest) = 1
m

m∑
i=1

`(ỹi, m̂ω(x̃i))

where (x̃i, ỹi) ∈ Dtest for i = 1, 2, . . . ,m and
m̂ω(x̃i) = mω(x̃i; θ̂(Dtrain))

But the more data used in the test set, the less can be used for
estimating model parameters.
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Adjustments to Training Error

Another approach is to use all the data for training, but adjust the
training error to account for potential over-fitting

I The adjustment is usually a function of model complexity
(e.g., edf)

I This will not work great for lasso, since edf is not continuous
in λ

Examples:

I AIC/BIC
I Mallow’s Cp
I Adjusted R2
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AIC/BIC

Akaike information criterion (AIC)

AIC(M) = −2 logL(M) + 2d(M)

Bayesian information criterion (BIC)

BIC(M) = AIC(M) + d(M) (log(n)− 2)

where L(M) is the likelihood of modelM (requires distributional
assumption) and d(M) is the effective degrees of freedom
(effective number of model parameters)
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Cross-Validation
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Performance Evaluation

An obvious way to assess how well a model will perform on test
data is to evaluate it on test data.

I We can split our data into a training and test set
I But how to decide how much data into each set?

I Too little in training and poor parameter estimates
I Too little in test and poor performance estimates and model

selection
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Cross-Validation

Cross-validation is a way to use more of the data for both
training and testing

I Randomly divide the set of observations into K groups, or
folds, of approximately equal size.

I The first fold is treated as a validation set, and the model is
fit on the remaining K − 1 folds. And predictions are made
on the hold-out set.

I The performance on each fold is combined to get a more
accurate assessment of model performance on future data.
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3-fold cross-validation

Fold 1 Fold 2 Fold 3

Iter 1

Iter 2

Iter 3

Train Train Test

Train Test Train

Test Train Train
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Cross-Validation Algorithm

1. Split data into K folds (of roughly equal size)
I F1, . . . ,FK

2. For k = 1, . . . ,K and for all models (e.g., for all ω) :
2.1 Use the data in D \ Fk to estimate the model m̂−k

ω

2.2 Predict for data in Fk and calculate the average loss

Vk(ω) = 1
nk

∑
i∈Fk

`(yi, m̂
−k
ω (xi))

where nk is the number of observations in fold k

3. Choose tuning parameters (model selection) that minimize
cross-validation loss

ω̂ = arg min
ω

CV(ω)

where CV(ω) = 1
n

∑K
k=1 nkVk(ω)

4. Refit all data using ω̂ to get the final model (θ̂). Or combine
prediction from all folds.
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1 SE Rule

The standard error of the average cross-validation error can be
estimated by:

SE(ω) = standard deviation of {Vk}√
K

One Standard Error Rule suggests that instead of using
ω̂ = arg minω CV(ω), we should use the least complex model
that is within one standard error of CV(ω̂)
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Choice of K

I K = 5, 10, n are common choices
I K = n is leave-one-out (LOOCV)

I closed form solution for models that are linear in y

I Note: around (K − 1)/K of the data is used for training and
1/K for testing

I if K is too small, then not enough training data and poor cv
error estimate

I if K is too large, then the m−k
ω are correlated and variance

is not reduced
I in the sense of training data is similar across folds
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Balanced Data Splitting for Cross-Validation

I The most basic approach is to use random sampling to
assign observations to folds

I But this can be problematic if there are outliers or classes
with small frequency

I Especially a problem for categorical data. Some levels are
not included in training set.

I So how to predict when they show up in test set?

I Stratified sampling can be used to ensure similar
distributions in each fold

I e.g., equal number of observations in each fold from same
quartile of y

I Or based on predictor values: clustering the training data
and then assigning into folds such that an equal number of
observations from each cluster are in each fold
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Different Model Families

Most of the discussion has been on finding the optimal
complexity/tuning parameter for a given model family.

But cross-validation can be used to compare across model
families.

Consider some options and their corresponding
complexity/tuning parameters:

I linear regression with stepwise variable selection
I number of parameters p, or acceptance/rejection criteria

I elastic net (includes lasso and ridge)
I α and λ

I k-nearest neighbor
I k

Use CV to pick best-of-the-best
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