03 - Lasso

ST 697 | Fall 2017 University of Alabama

Shrinkage Methods

Instead of an "all or nothing" approach, shrinkage methods force the coefficients closer toward 0.

- Usually this is accomplished through penalized regression where a penalty is imposed on the size of the coefficients
- Equivalently, the size of the coefficients are *constrained* not to exceed a threshold

The general framework is

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta} \left\{ l(\beta) + \lambda P(\beta) \right\}$$

where

- ► l(β) is the loss function (e.g. mean squared error, negative log-likelihood)
- $\lambda \ge 0$ is the strength of the penalty
- ► P(β) is the penalty term (as a function of the model parameters)

Two Representations

The penalized optimization (Lagrangian form)

$$\hat{\beta} = \underset{\beta}{\arg\min} \left\{ l(\beta) + \lambda P(\beta) \right\}$$

An equivalent representation is (constrained optimization)

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} l(\beta) \qquad \text{subject to } P(\beta) \le t$$
$$= \underset{\beta: P(\beta) \le t}{\operatorname{arg\,min}} l(\beta)$$

Penalties

Examples penalties:

Ridge Penalty

$$P(\beta) = \sum_{j=1}^{p} |\beta_j|^2 = \beta^{\mathsf{T}} \beta = \|\beta\|_2^2$$

Lasso Penalty

$$P(\beta) = \sum_{j=1}^{p} |\beta_j| = \|\beta\|_1$$

Best Subsets

$$P(\beta) = \sum_{j=1}^{p} |\beta_j|^0 = \sum_{j=1}^{p} \mathbb{1}_{(\beta_j \neq 0)}$$

The Lasso

For lasso regression

$$l(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
$$P(\beta) = \sum_{j=1}^{p} |\beta_j| \qquad \text{(Notice that } \beta_0 \text{ is not penalized)}$$

So the ridge solution becomes:

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

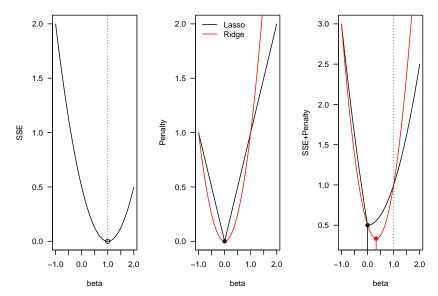
Why is it important to scale the predictor variables?

Lasso Penalty

- By using a L₁ penalty, lasso penalty can shrink some coefficients all the way to 0 (unlike the ridge penalty)
- This effectively removes predictors from the model (like the stepwise procedures), but in a type of continuous fashion
- Lasso stands for "Least Absolute Shrinkage and Selection Operator"

Lasso Selection: $l(\beta) = \frac{1}{2}(1-\beta)^2$

 $\lambda = 1$



Geometry of LASSO and Ridge

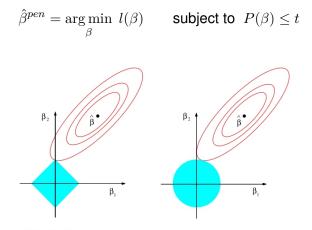


FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Penalty Family

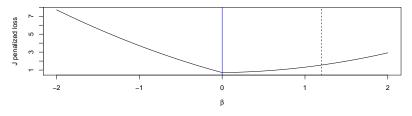
$$P(\beta, \alpha) = \sum_{j=1}^{p} |\beta_j|^q$$

- q = 0: Best subsets
- ▶ q = 1: Lasso
- ▶ *q* = 2: Ridge

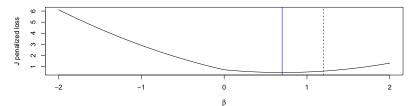
FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_j|^q$ for given values of q.

Minimization function $J(\beta)$ for univariate lasso

$$J(\beta, \lambda) = \frac{1}{2}(1.2 - \beta)^2 + \lambda |\beta|$$

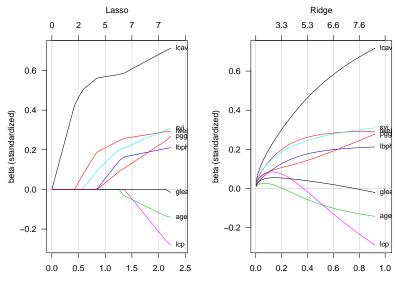


lambda = 0.5



Comparing Lasso and Ridge Regression

Prostate Cancer Data from ESL book: Figs 3.8, 3.10 and Table 3.3



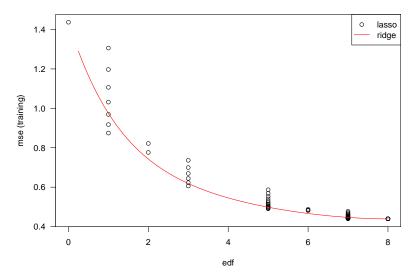
ST 697 | Fall 2017

L1 norm: sum of absolute betas

L2 norm: sum of squared betas

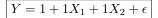
11/18

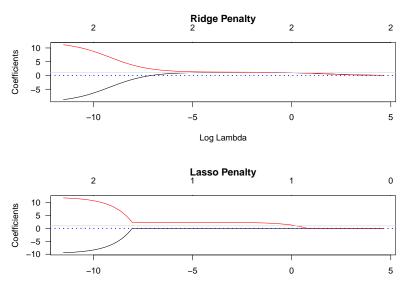
Comparing Lasso and Ridge Regression



ST 697 | Falt 2017

Example with Strong Correlation





ST 697 | Fall 2017

Log Lambda

13/18

Effective Number of Parameters

- ► Unlike ridge regression, the lasso is *not* a linear smoother. There is no way to write ŷ = Hy.
- Thus, estimating the effective degrees of freedom is not based on trace of hat matrix.
- It turns out that the number of non-zero coefficients is a decent approximation of the effective number of parameters
- ► We can use this value ($df = \sum_j \mathbb{1}(|\beta_j| > 0)$) in AIC/BIC/GCV for selecting λ
 - Note: the df is not continuous in λ, so the min SSE model would have smallest λ within the set with df = k

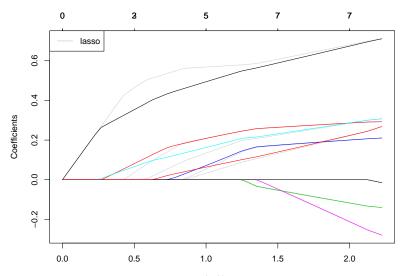
Elastic Net

The Elastic Net Penalty can help with selection (like lasso) and shrinks together correlated predictors (like ridge).

$$P(\beta, \alpha) = \sum_{j=1}^{p} \alpha \beta_j^2 + (1 - \alpha) |\beta_j| \qquad \text{Eq 3.54 on pg 73 of ESL}$$
$$P(\beta, \alpha) = \sum_{j=1}^{p} \frac{(1 - \alpha)}{2} \beta_j^2 + \alpha |\beta_j| \qquad \text{glmnet R package}$$

Compare Elastic Net to Lasso and Ridge

Elastic Net with $\alpha = 0.5$



L1 Norm

Categorical Predictors in Penalized Regression

- 1. How does lasso/ridge treat categorical predictors?
- 2. How does lasso/ridge treat interaction terms?
- 3. How does lasso/ridge treat basis expansions of a single variable, e.g. polynomial?

Group Lasso

- L groups of predictors
 - categorical variable with 3 levels will be in a group of 3 predictors
- Let X_l be $n \times p_l$ matrix of group l predictors
- β_l is $p_l \times 1$ group coefficients

$$J(\beta) = \ell(\beta) + P(\beta, \lambda)$$

$$\ell(\beta) = \left\| Y - \beta_0 1 - \sum_{l=1}^{L} X_l \beta_l \right\|_2^2$$

$$P(\beta, \lambda) = \sum_{l=1}^{L} \sqrt{p_l} \, \|\beta_l\|_2$$