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Shrinkage Methods

Instead of an “all or nothing" approach, shrinkage methods force
the coefficients closer toward 0.

» Usually this is accomplished through penalized regression
where a penalty is imposed on the size of the coefficients

» Equivalently, the size of the coefficients are constrained not
to exceed a threshold

The general framework is

B= argﬂmin {l(B) + AP(B)}

where

» [(B) is the loss function (e.g. mean squared error, negative
log-likelihood)

» \ > 0 is the strength of the penalty

» P(3) is the penalty term (as a function of the model

parameters)
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Two Representations

The penalized optimization (Lagrangian form)

B = arggnin {1(8) + \P(B)}

An equivalent representation is (constrained optimization)

3 = arg min 1(B) subjectto P(B) <t
B

= argmin [(f)
B: P(B)<t
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Penalties

Examples penalties:

» Ridge Penalty
L T 2
P(B) = 161> = BT5= I8l
j=1
» Lasso Penalty
p
P(B)=_16i1 = 18Il
j=1
» Best Subsets

p p
P(B)=>_ 181" = > (5,20
st =
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The Lasso

For lasso regression

2
P
U(B) = Z (yz — Bo — Z%’jﬁj)

J=1

p
P(B)=>_18;1  (Notice that 5, is not penalized)

So the ridge solution becomes:

2
n p p
6r1dg;e = arggnin Z (yz — 5() — Z xij,Bj) + )\Z ‘5J|
j=1 j=1

=1

Why is it important to scale the predictor variables?
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Lasso Penalty

» By using a L; penalty, lasso penalty can shrink some
coefficients all the way to 0 (unlike the ridge penalty)

» This effectively removes predictors from the model (like the
stepwise procedures), but in a type of continuous fashion

» Lasso stands for “Least Absolute Shrinkage and Selection
Operator”
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Lasso Selection: {(8) = 1(1 — 3)?

A=1
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— Ridge
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Geometry of LASSO and Ridge

pPen = argmin 1(3)  subjectto P(8) <t
B

FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions | 1| + |Be| <t and 8% + 33 < %,
respectively, while the red ellipses are the contours of
the least squares error function.
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Penalty Family

p
P(,a) = |55
j=1

» ¢ = 0: Best subsets
» ¢ =1: Lasso
» ¢ = 2: Ridge
q 1 q=20.5

4 g =2 q
|
|
|
|

FIGURE 3.12.
ZJ. |3;|7 for given values of q.
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Minimization function J(/3) for univariate lasso

J(B,A) = 5(1.2 = B)* + A|B]

lambda = 1.3
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Comparing Lasso and Ridge Regression

Prostate Cancer Data from ESL book: Figs 3.8, 3.10 and Table 3.3

Lasso Ridge
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Comparing Lasso and Ridge Regression

MSE vs. EDF (not including intercept)

14 ° o lasso
’ ridge
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Example with Strong Correlation

[V =1+1X;+1Xa+e

2Ridge Penalty

Coefficients
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Log Lambda
Lasso Penalty
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Effective Number of Parameters

v

Unlike ridge regression, the lasso is not a linear smoother.
There is no way to write y = Hy.

Thus, estimating the effective degrees of freedom is not
based on trace of hat matrix.

It turns out that the number of non-zero coefficients is a
decent approximation of the effective number of parameters
» We can use this value (df = 37, 1(|8;| > 0)) in
AIC/BIC/GCV for selecting A

» Note: the df is not continuous in A, so the min SSE model
would have smallest A\ within the set with df = k

v

v
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Elastic Net

The Elastic Net Penalty can help with selection (like lasso) and
shrinks together correlated predictors (like ridge).

afi+(1-a)|B;|  Eq3.540npg73of ESL

I
M=

P(B,a)

<.
Il
—_

_a)

'M:

P(B,a) = B2+ alB;]  glmnet R package

<
Il
—
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Compare Elastic Net to Lasso and Ridge

Elastic Net with oo = 0.5
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Categorical Predictors in Penalized Regression

1. How does lasso/ridge treat categorical predictors?
2. How does lasso/ridge treat interaction terms?

3. How does lasso/ridge treat basis expansions of a single
variable, e.g. polynomial?
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Group Lasso

» L groups of predictors

» categorical variable with 3 levels will be in a group of 3
predictors

» Let X; be n x p; matrix of group [ predictors
» (5, is p; x 1 group coefficients

J(B) = €(B) + P(B,))

2

L
(pB) = HY — Bol =X
=1

2

L

P(B,A) =Y o llBill,

=1
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