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library(tidyverse)
library(stringr)
library(tm) # install.packages("tm")
library(wordcloud) # install.packages("wordcloud")
library(SnowballC) # install.packages("SnowballC")
library(RColorBrewer) # install.packages("RColorBrewer")
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1 Text Mining

We are going to use some of the functions from the tm package to do some basic text mining and build a
word cloud. The tm package has a vignette (https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf)
and I found a webpage that walks through some of the steps (https://eight2late.wordpress.com/2015/05/27/
a-gentle-introduction-to-text-mining-using-r/). There are doubtless many other free sites to get you started
on text mining.

1.1 Goals

We are going to analyze a set of documents related to business analytics. Specifically, we are going to break a
document down into a frequency distribution of its words and examine the most frequent (and potentially the
most important words).

Like all topics we have covered this semester, we are only scratching the surface of what is possible in the
field of text mining and text analytics. Document clustering, author attribution, sentiment analysis, natural
language processing (NLP), entity extraction, word and document networks, etc. are just some examples of
where you can go with this. Hopefully, we cover enough so you can start to imagine and think about what is
possible with text data.

We have 26 plain text (.txt) documents. We need to read these into R and create a character vector where
each element is a document.

1.2 Read in Text Documents

Here I will do this manually with a loop and read_file(). The data files can be found here https://raw.
githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-xx.txt, where xx is two digits between
01-26.

#- read in all documents
base_url = "https://raw.githubusercontent.com/mdporter/ST597/master/data/BA_skills/ba-"
end_url = ".txt"

docs = character(26) # create vector of 26 blank elements
for(i in 1:26){ # for loop to set the value of i

file_num = str_pad(i, width=2, side="left", pad="0") # make 2 digit number
url = str_c(base_url, file_num, end_url)
docs[i] = read_file(url)

}

#- example document
# docs[22] # raw form
writeLines(str_wrap(docs[22], width=75)) # displayed form
#> My very simple take: Programming in R/Python both for data analysis and
#> for visualization. Equally important more or less in my view. Beyond that,
#> hands-on data set analysis. Teach people to look at data and decide the
#> best approach themselves rather than telling them which approach to take
#> and grading on their ability to do so. Manager of Analytics

Notice how messy some of these documents are.

2 Document Corpus

The tm package provides a set of functions to work with a corpus, or collection of documents that contain
text data. While there are many things we can do without the tm package, we will go ahead and make the
corpus to demo a few of the more helpful functions.
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The tm package allows a few ways to make a corpus depending on where the documents are (in memory, in
database, etc.). Here are some common sources:

function description

?Source Help for setting the source
DirSource() Creates a directory source (path to document directory)
VectorSource() Creates a source from vector of strings (documents)

The function DirSource() basically reads in all the documents from a directory and VectorSource()
loads an existing R vector of documents.

2.1 Create Corpus

Next, we need to tell R the type of source, in this case a vector source, then create the corpus

src = VectorSource(docs) # source
corpus = Corpus(src) # corpus

The Corpus() function lets you specify the type of document (e.g., plain text, pdf, word, Reuters news,
etc.) and language to use. The help ?Reader can provide some additional information. But here the default
values will work for us (plain text and english language).

3 Word Counts

We are going to use the functions from the stringr and dplyr packages to find the frequency of words in
our documents. Here we get two word counts:

• the total_counts data frame gives the total number of times a word appears in all the documents
(so a word that appears more than once in a document will be counted more than once.)

• the distinct_counts gives the number of documents that contain the word (so a word that appears
more than once in a document will only be counted once. )

3.1 Get all words into a data frame

#- get the words for each document
X = str_split(docs, boundary("word")) # list of words

#- use stack() function to make data frame
names(X) = 1:length(X) # add names to elements of X
Y = stack(X) %>%

rename(word=values, document=ind) # change col names
head(Y)
#> word document
#> 1 Obviously 1
#> 2 I 1
#> 3 know 1
#> 4 more 1
#> 5 about 1
#> 6 basketball 1
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3.2 Get word counts

#- Get frequency of words (total)
(total_counts = count(Y, word, sort=TRUE) )
#> # A tibble: 1,659 × 2
#> word n
#> <chr> <int>
#> 1 to 183
#> 2 and 167
#> 3 the 157
#> 4 a 138
#> 5 of 127
#> 6 in 99
#> 7 is 89
#> 8 I 84
#> 9 that 82
#> 10 data 69
#> # ... with 1,649 more rows

#- Get frequency of word occurrence (e.g., {0,1} per document)
(distinct_counts =

Y %>%
group_by(word) %>%
summarize(n=n_distinct(document)) %>%
arrange(desc(n)))

#> # A tibble: 1,659 × 2
#> word n
#> <chr> <int>
#> 1 and 26
#> 2 of 25
#> 3 the 25
#> 4 to 25
#> 5 in 24
#> 6 a 22
#> 7 Analytics 21
#> 8 are 21
#> 9 I 21
#> 10 that 21
#> # ... with 1,649 more rows

Notice that the most common words are uninteresting: “to”, “and”, “of”, “the”. We also have lots of numbers

arrange(total_counts, word) # order alphabetically (numbers first)
#> # A tibble: 1,659 × 2
#> word n
#> <chr> <int>
#> 1 1 8
#> 2 10 2
#> 3 100 1
#> 4 2 10
#> 5 20 1
#> 6 200,000 1
#> 7 2018 1
#> 8 21st 1
#> 9 3 7
#> 10 30 1
#> # ... with 1,649 more rows

And, consider if any of these words should be considered together?

filter(total_counts, str_detect(word, pattern="[Aa]naly"))
#> # A tibble: 10 × 2
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#> word n
#> <chr> <int>
#> 1 analytics 38
#> 2 Analytics 31
#> 3 analysis 13
#> 4 analysts 8
#> 5 analytical 6
#> 6 analytic 5
#> 7 Analysis 3
#> 8 analyst 2
#> 9 analyze 1
#> 10 analyzing 1

4 Transformations

Before we start our data analysis and modelling, it is often necessary to modify the text in some ways. For
example, the basic step of extracting the words is one task that is usually performed. To help with this, we
can also

• remove whitespace
• convert letters to same case (e.g., lowercase)
• removing punctuation
• removing stop words, common words that do not carry much meaning to the analysis (e.g., “an”, “a”,

“the”)
• removing numbers or other non-text characters

4.1 tm transformations

The tm package provides some helpful transformation functions.

library(tm)
getTransformations() # list of transformations
#> [1] "removeNumbers" "removePunctuation" "removeWords"
#> [4] "stemDocument" "stripWhitespace"

Most of the transformation functions just call basic string manipulation functions (e.g., from stringr). For
example, the removeNumbers() function just removes all numbers

text = "04-19-17 Tonight we're going to party like it's 1999!"
tm::removeNumbers(text)
#> [1] "-- Tonight we're going to party like it's !"
stringr::str_replace_all(text, pattern="[:digit:]+", replacement="")
#> [1] "-- Tonight we're going to party like it's !"

To apply a transformation to the corpus, you need to use the function tm_map(<corpus>,
<function>). For example

tmp_corpus = tm_map(corpus, stripWhitespace)

will create a new corpus where all extra whitespace has been stripped out.

4.1.1 stop words

The tm package also gives a list of stop words
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stopwords("english")
#> [1] "i" "me" "my" "myself" "we"
#> [6] "our" "ours" "ourselves" "you" "your"
#> [11] "yours" "yourself" "yourselves" "he" "him"
#> [16] "his" "himself" "she" "her" "hers"
#> [21] "herself" "it" "its" "itself" "they"
#> [26] "them" "their" "theirs" "themselves" "what"
#> [31] "which" "who" "whom" "this" "that"
#> [36] "these" "those" "am" "is" "are"
#> [41] "was" "were" "be" "been" "being"
#> [46] "have" "has" "had" "having" "do"
#> [51] "does" "did" "doing" "would" "should"
#> [56] "could" "ought" "i'm" "you're" "he's"
#> [61] "she's" "it's" "we're" "they're" "i've"
#> [66] "you've" "we've" "they've" "i'd" "you'd"
#> [71] "he'd" "she'd" "we'd" "they'd" "i'll"
#> [76] "you'll" "he'll" "she'll" "we'll" "they'll"
#> [81] "isn't" "aren't" "wasn't" "weren't" "hasn't"
#> [86] "haven't" "hadn't" "doesn't" "don't" "didn't"
#> [91] "won't" "wouldn't" "shan't" "shouldn't" "can't"
#> [96] "cannot" "couldn't" "mustn't" "let's" "that's"
#> [101] "who's" "what's" "here's" "there's" "when's"
#> [106] "where's" "why's" "how's" "a" "an"
#> [111] "the" "and" "but" "if" "or"
#> [116] "because" "as" "until" "while" "of"
#> [121] "at" "by" "for" "with" "about"
#> [126] "against" "between" "into" "through" "during"
#> [131] "before" "after" "above" "below" "to"
#> [136] "from" "up" "down" "in" "out"
#> [141] "on" "off" "over" "under" "again"
#> [146] "further" "then" "once" "here" "there"
#> [151] "when" "where" "why" "how" "all"
#> [156] "any" "both" "each" "few" "more"
#> [161] "most" "other" "some" "such" "no"
#> [166] "nor" "not" "only" "own" "same"
#> [171] "so" "than" "too" "very"

Notice that all of these are lowercase. So to filter these out, we need to first transform all letters to lowercase.
To remove these words from the corpus use the removeWords() function

tmp_corpus = tm_map(tmp_corpus, removeWords, stopwords("english"))

4.1.2 Multiple transformations

We can link transformations together with the pipe operator (%>%)
tmp_corpus =

corpus %>%
tm_map(stripWhitespace) %>% # remove extra whitespaces
tm_map(content_transformer(str_to_lower)) %>% # convert to lowercase
tm_map(removeWords, stopwords("english")) # remove stop words

as.character(tmp_corpus[[22]])
#> [1] " simple take: programming r/python data analysis visualization. equally important less view. beyond , hands- data set analysis. teach people look data decide best approach rather telling approach take grading ability . manager analytics "

Notice that we have reduce the data considerably, but not reduced much information.

Suppose we want to get an idea of what software is popular. In this document, we see “r/python”. We
need to be careful how we remove punctuation to ensure we can separate “r” and “python”. If we use tm’s
removePunctuation() function, then we will have a problem

6



removePunctuation(as.character(tmp_corpus[[22]]))
#> [1] " simple take programming rpython data analysis visualization equally important less view beyond hands data set analysis teach people look data decide best approach rather telling approach take grading ability manager analytics "

It is also important to recognize the order of transformation matters. If all of the stop words are in
lowercase, then the text should be converted to lowercase before removing stop words.

4.1.3 Custom Transformations

We can also use custom functions in tm_map() as long as the first argument can be a text document. For
example, we want to remove punctuation, but add a space between “r/python”

str_replace_all(as.character(tmp_corpus[[22]]), "[:punct:]+", " ")
#> [1] " simple take programming r python data analysis visualization equally important less view beyond hands data set analysis teach people look data decide best approach rather telling approach take grading ability manager analytics "

To put this in a form suitable for use in tm_map(), we need to use content_transformer() like this

#- make new function based on str_replace_all()
replace <- content_transformer(stringr::str_replace_all)

4.2 Our first attempt at transformations

Here is what I came up with as a first round solution

#- additional words to remove
rm_words = c('also', 'areas', 'can', 'etc', 'get', 'just', 'like',

'lot', 'many', 'may', 'need', 'one', 's', 'set', 't',
'time', 'us', 'use', 'way', 'well', 'will', 'b', 'e',
'g', 'less', 'give', 'tell', 'im', 'take', 'coming',
'say', 'really')

#- make new function based on str_replace_all()
replace <- content_transformer(stringr::str_replace_all)

#- Remember: order matters!
corpus2 = corpus %>%

tm_map(replace, "'", "") %>% # remove apostrophes
tm_map(replace, "[[:punct:]]+", " ") %>% # replace (other) punctuation with space
tm_map(content_transformer(str_to_lower)) %>% # convert to lowercase
tm_map(removeWords, stopwords("english")) %>% # remove stopwords
tm_map(removeWords, rm_words) %>% # remove extra words
tm_map(stripWhitespace) %>% # remove extra whitespaces
tm_map(removeNumbers) # remove *all* numbers

4.3 Stemming (and Lemmatization)

We noticed a potential problem when multiple words correspond to the same concept or idea. For example,
“analyzing”, “analyze”, and “analysis” could potentially be grouped together for frequency analysis (note:
this could potentially be done after processing, but then we will be forced to deal with much larger data).

Stemming and Lemmatization refer to the process of reducing words to a base or root form so multiple words
that carry similar meaning/information can be combined. Stemming uses letter patterns (think regex) while
lemmatization finds the part of speech to help guide the stemming. Some more details can be found here
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html.

The tm package can stem words using Porter’s (not me!) stemming algorithm http://snowball.tartarus.org/
algorithms/porter/stemmer.html. But this requires functions from the SnowballC package, which must be
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installed and loaded. Here is an example of how the stemming works

library(SnowballC) # for wordStem() function
filter(total_counts, str_detect(word, pattern="[Aa]naly")) %>%
mutate(stemmed=wordStem(word))

#> # A tibble: 10 × 3
#> word n stemmed
#> <chr> <int> <chr>
#> 1 analytics 38 analyt
#> 2 Analytics 31 Analyt
#> 3 analysis 13 analysi
#> 4 analysts 8 analyst
#> 5 analytical 6 analyt
#> 6 analytic 5 analyt
#> 7 Analysis 3 Analysi
#> 8 analyst 2 analyst
#> 9 analyze 1 analyz
#> 10 analyzing 1 analyz

Stemming may not great for word cloud, because the stemmed version may not make much sense. One
approach is to stem the words, then use one representative word in the word cloud. However, we will not go
into this much detail here.

5 Document Term Matrix

The document term matrix is a matrix with rows that corresponds to the documents and columns that cor-
respond to words (terms). The function DocumentTermMatrix(x=<corpus>, control=<list
of options>) generates the matrix.

#-- Make Document (sparse) Term Matrix
# dtm has rows corresponding to documents and columns corresponding to terms
dtm = DocumentTermMatrix(corpus2,

control=list(wordLengths=c(1,1000))) # allow one letter words
dim(dtm)
#> [1] 26 1360

The help for ?termFreq specifies the control options. Above, we allow words of length 1 so words like “R”
and “D3” will be included.

5.1 Modify words

We made everything lowercase, but may want to change these in preparation for making a word cloud. This
will illustrate the process of modifying the software related words.

#- get words/terms in columns
cnames = colnames(dtm) # column names (terms)
head(cnames)
#> [1] "able" "ahead" "almost" "analytics"
#> [5] "arena" "availability"

#-- List of software (in desired case)
software_list = c('R', 'SQL', 'Python', 'Tableau', 'D3', 'MySQL', 'SAS', 'SPSS', 'Excel')

Now we need to find the column names that are the lowercase version of the software and replace with the
proper case. There are a few ways to do it; here are two.

#- Method 1: loop
for(i in software_list){

ind = cnames %in% str_to_lower(i) # find matches
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cnames[ind] = i # replace
}

#- Method 2: str_replace_all with special `pattern=` argument
new_vals = software_list
old_vals = str_to_lower(software_list)
pat = setNames(new_vals, str_c("^",old_vals,"$")) # named vector

# regex exact match of 'pattern' is "^pattern$"
cnames2 = str_replace_all(cnames, pattern = pat)

#- Ensure they are identical
identical(cnames, cnames2)
#> [1] TRUE

#- Reassign column names
colnames(dtm) = cnames # reassign column names

5.2 Word Frequency

It is easy to get the word counts from the document term matrix using the colSums() function
term_count =

data_frame(word = colnames(dtm),
n=colSums(as.matrix(dtm))) %>%

arrange(desc(n))

The as.matrix() is used to convert a sparse matrix to a regular matrix.

The term_count data frame gives the total number of time a word is used in all the documents. We can
also get the number of documents the word appears in by first converting the matrix to a logical (TRUE if an
element is greater than 0 and FALSE otherwise).

distinct_term_count =
data_frame(word = colnames(dtm),

n_docs=colSums(as.matrix(dtm)>0)) %>%
arrange(desc(n_docs))

Now we can use dplyr tools to find specific words, etc.

a = term_count %>% filter(word %in% software_list)
b = distinct_term_count %>% filter(word %in% software_list)
left_join(a,b, by="word")
#> # A tibble: 8 × 3
#> word n n_docs
#> <chr> <dbl> <dbl>
#> 1 R 17 9
#> 2 SQL 13 9
#> 3 Python 12 9
#> 4 Tableau 5 4
#> 5 SAS 3 3
#> 6 Excel 2 2
#> 7 MySQL 1 1
#> 8 SPSS 1 1

6 Word Clouds

The package wordcloud makes word clouds. A word cloud is a graphical representation of text that sizes
and colors the words. Size is usually considered to be proportional to the frequency of the word’s occurrence,
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but in general could be related to some other measure of importance.

Notice the wordcloud() functions requires two vectors (columns of the term_count data frame),
words= and freq= and then other options related to the display. In the following, I modify the:

• scale of word sizes
• min.freq=5 to only include words that have freq >= 5
• random.order=FALSE to plot words according to frequency
• colors=brewer.pal(0, "Set1") to set the color palette. See brewer.pal.info for list

of palettes.

library(wordcloud) # install.packages("wordcloud")
library(RColorBrewer)

set.seed(317) # stochastic layout
wordcloud(term_count$word, term_count$n,

scale = c(4, .5),
min.freq = 5,
random.order = FALSE,
colors = brewer.pal(9, "Set1")
)
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wordcloud(distinct_term_count$word, distinct_term_count$n_docs,

scale = c(4, .2),
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random.order = FALSE,
colors = brewer.pal(5, "Set1")
)
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