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1 Goals of Regression

There are two primary goals for using regression analysis

1. Inference about parameters
* How does advertising budget affect sales?
* Estimate effect of X on Y, controlling for other explanatory factors.
2. Prediction
* How accurately can sales be predicted given a certain sales budget?
* Use whatever it takes (transformations, new variables, etc.) to get better predictions.

These are different goals and drive potentially different model specifications.

1.1 Modeling in general

Models are a way to summarize data. Linear regression models, in particular, are a family of models that
impose a linear structure between the predictor and response variables.

See the RDS Models chapter of the textbook for some good information on modelling basics.

The free book An Introduction to Statistical Learning

This book provides an introduction to statistical learning methods. It is aimed for upper level
undergraduate students, masters students and Ph.D. students in the non-mathematical sciences.
The book also contains a number of R labs with detailed explanations on how to implement
the various methods in real life settings, and should be a valuable resource for a practicing data
scientist.

2 Simple Linear Regression

2.1 Advertising Data

Consider some advertising data:

#— load advertising data (drop 1st column of row names)

advert = read csv("http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv") %>%
select (-1) # remove first column of rownames

summary (advert)

#> TV Radio Newspaper Sales

#> Min. : 0.70 Min. : 0.000 Min. : 0.30 Min. :1.60

#> 1st Qu.: 74.38 lst Qu.: 9.975 Ist Qu.: 12.75 Ilst Qu.:10.38
#> Median :149.75 Median :22.900 Median : 25.75 Median :12.90

#> Mean :147.04 Mean :23.264 Mean g 30,55 Mean :14.02
#> 3rd Qu.:218.82 3rd Qu.:36.525 3rd Qu.: 45.10 3rd Qu.:17.40
#> Max. :296.40 Max. :49.600 Max. :114.00 Max. :27.00

These data give the sales of a product (in thousands of units) under advertising budgets (in thousands of
dollars) of TV, Radio, and Newspaper. This was most likely observational data (not experimental) which
limits the conclusions we can make from modeling.


http://r4ds.had.co.nz/model-basics.html
http://www-bcf.usc.edu/~gareth/ISL/

We can start by examining the relationship between the TV budget and Sales using scatterplots with a
linear fit:

#— left (smooth)
ggplot (advert, aes(TV, Sales)) + geom_smooth() +
geom_point () + ggtitle("smooth fit")

#- right (linear)

ggplot (advert, aes(TV, Sales)) + geom_smooth (method="1m") +
geom_point () + ggtitle("linear fit")

smooth fit linear fit
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2.2 Simple (univariate) Linear Regression Model

A simple linear regression model is one with a single explanatory variable
Y=0+/X+e

* [ is the intercept

* (31 is the slope

» We will use training data: (z1,1), (z2,%2), ..., (Zn, yn) to estimate the model parameters. (this is
the same data used to make a scatterplot)

2.3 Estimating model parameters (coefficients)

In the advertising data, let’s consider how Sales are related to the TV budget. The linear model is
sales= g+ 81 X TV +¢

and the fitted, predictive model is -
sales = Bg + B1 x TV

and we wish to find estimate the parameters, Bo, /3’1 such that sales is close to the actual sales for any given
value of TV budget.



2.4 Using 1m () for fitting linear regression models

In R, the 1m () function creates (and estimates) a linear model.

Im.TV = 1Im(Sales~TV, data=advert)

Notice a few things:

* This produces the 1m object 1m. TV. This is basically a list, but structured so it can be used easily in
other functions.

* The formula interface Sales~TV makes Sales the response/dependent variable and TV the predic-
tor/independent variable

* The data=advert provides the data

We can do lots with the 1m. TV object:

summary (1lm.TV) # gives a summary of the linear model
#>

#> Call:

#> Im(formula = Sales ~ TV, data = advert)

#>

#> Residuals:

#> Min 10 Median 30 Max

#> —-8.3860 —-1.9545 -0.1913 2.0671 7.2124

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>[t])

#> (Intercept) 7.032594 0.457843 15.36 <2e-16 ***
#> TV 0.047537 0.002691 17.67 <2e-16 #*+*
#> ——=

#> Signif. codes: 0 'xx+' 0.001 'xx' 0.01 '+' 0.05 '.'" 0.1 " ' 1
#>

#> Residual standard error: 3.259 on 198 degrees of freedom
#> Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
#> F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
summary (1lm.TV) $r.squared # R squared value

#> [1] 0.6118751

coef (1m.TV) # model coefficients (the betas)

#> (Intercept) TV

#> 7.03259355 0.04753664

confint (Im.TV, level=0.95) # 95% confidence interval of coefficients
#> 2.5 % 97.5 %

#> (Intercept) 6.12971927 7.93546783

#> TV 0.04223072 0.05284256

So we see the fitted linear model is:

sales = 7.03 + 0.048 x TV

2.5 Using predict () to make predictions

Once we have a model, the predict () function will give predictions. We have to pass in the model and
the data for making predictions (as a data frame)



est.sales = predict (1lm.TV, newdata = data.frame(TV = advert$TV))
advert2 = advert %>% mutate(est.sales)

Now we can replicate the geom_smooth (method="1m") call

ggplot (advert2, aes (x=TV)) +
geom_point (aes (y=Sales)) +
geom_line (aes (y=est.sales))
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2.6 More univariate models

Just change the name of the predictor variable to get the models for the other available predictors

Im.TV = 1Im(Sales~TV, data=advert)
Im.Radio = 1lm(Sales~Radio, data=advert)
Ilm.Newspaper = lm(Sales~Newspaper, data=advert)

And if we wanted to plot all three, we could use faceting if we first convert the data into long form

advert_long = gather (advert,
key="channel",
value="budget",
—-Sales)

ggplot (advert_long, aes(x=budget, y=Sales)) +
geom_smooth (method="1m") + geom_point () +
facet_wrap (~channel, scales="free_ x" )
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2.7 Multivariate Considerations
library (GGally)
ggpairs (advert) # also see pairs(advert) for a base R version
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See the http://ggobi.github.io/ggally/ help page for more fun examples of cool plots.


http://ggobi.github.io/ggally/

3 Multiple Linear Regression

3.1 Linear Regression

The standard general form for linear regression is
Y=,50+,51X1+ﬂ2X2+...,+,3po+6

* Y is the response or dependent variable
* X1, Xo,..., X, are called the p explanatory, independent, or predictor variables
* the greek letter € (epsilon) is the random error variable

Training data is used to estimate the model parameters or coefficients.

(211 z12 - - - T | N1
xT21 X22 ¢ - T2p | Y2
[ Tnl Tn2 * ° * Tnp | Ynd

Producing the predictive model:
ﬁ(l’l, o, ... ,:cp) = 50 + 511’1 + ,6’2%2 + ..., —l—Bpxp

* where Bj are the weights assigned to each variable
* these weights are the values the minimize the residual sum of squares (RSS) for predicting the training
data



3.2 Multiple Components
Consider the advertising sales model that uses all three predictors

sales = By + B1 X (TV) + B2 x (radio) + 3 X (newspaper) + error

In R, the formula would be Sales ~ TV + Radio + Newspaper (the order of the predictor variables
does not matter).

Im.all = Im(Sales ~ TV + Radio + Newspaper, data=advert)
summary (lm.all)

#>

#> Call:

#> 1Im(formula = Sales ~ TV + Radio + Newspaper, data = advert)
#>

#> Residuals:

#> Min 10 Median 30 Max

#> -8.8277 -0.8908 0.2418 1.1893 2.8292

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>/t])

#> (Intercept) 2.938889 0.311908 9.422 <2e-16 #*x*

#> TV 0.045765 0.001395 32.809 <2e-16 #*x*

#> Radio 0.188530 0.008611 21.893 <2e-16 #*+*

#> Newspaper -0.001037 0.005871 -0.177 0.86

#> ——=

#> Signif. codes: 0 '"##xx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 " ' 1
#>

#> Residual standard error: 1.686 on 196 degrees of freedom
#> Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
#> F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

Notice that we have a big increase in the R? and reduction in RSFE indicating that this model with all three
terms does better at fitting the training data than the models with only a single predictor.

However, notice that the p-value for the Newspaper coefficient is not small (and no significance stars).
Maybe Newspaper is not very helpful once TV and Radio are in the model?
Let’s consider using only these two variables (just remove Newspaper)

Im.TVRadio = 1Im(Sales ~ TV + Radio,
summary (1lm.TVRadio)

data=advert)

#>

#> Call:

#> 1Im(formula = Sales ~ TV + Radio, data = advert)

#>

#> Residuals:

#> Min 10 Median 30 Max

#> —-8.7977 -0.8752 0.2422 1.1708 2.8328

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 2.92110 0.29449 9.919 <2e-16 #**x*
#> TV 0.04575 0.00139 32.909 <2e—-16 #*%*



#> Radio 0.18799 0.00804 23.382 <2e-16 **x*

#> ——=

#> Signif. codes: 0 '"##xx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 " ' 1
#>

#> Residual standard error: 1.681 on 197 degrees of freedom

#> Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962

#> F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16

3.2.1 Adjusted R?

We want to compare a model with four estimated parameters (1m.al1l) to a model with only three estimated
parameters (1m. TVRadio). By adding an additional parameter the R? will necessarily increase. It is better
to consider the RSE or adjusted R2.

The adjusted R? penalizes (reduces) the R? to account for the number of parameters that need to be estimated

RSS n—1
B ()

S TSS\n—p—1

The larger the adjusted R2, R?l 4j» the better the model.

The adjusted R? for Im.all=0.8956 and for Im. TVRadio = 0.8962
* Because the model 1m. TVRadio has the (slightly) larger Rgdj it provides a reason to prefer it over
the full model.
* When the values are this close, choose the simpler (less coefficients to estimate) model
— What if we had a confidence interval for R"2_{adj}?
— It is an estimate of a population parameter, so we can get a confidence interval, or test to see if
the values differ between models
* Perhaps the company will stop spending money on Newspaper advertising? Should they?
— If we believe our regression model is true, then yes. But for such observational data, proceed with
caution. Check assumptions and try more models before making such a decision.

4 Extending the Linear Model

4.1 Removing the Additive Structure

We have found that the best model so far is the one that uses TV and Radio to predict the value of Sales.

Specifically, the least squares model is:

sales = 2.921 + 0.046 x (TV) + 0.188 x (radio)

* So a one unit increase in TV would suggest a 0.046 unit increase in Sales, no matter the budget
allocated to Radio
* But what if spending money on Radio advertising actually increases the effectiveness of the TV
advertising?
— So TV effects should increase as Radio increases



- E.g., spending 1/2 of a $100,000 budget on TV and Radio may increase Sales more than
allocating the entire amount to only TV or only Radio
— In marketing, this is the synergy effect. In statistics, this is known as an interaction effect.

4.1.1 Interaction Effect

Consider the linear regression model with two variables and an interaction effect

Y =By + B1X1 + B2 Xo + B3 X1 Xg + €

This model relaxes the additive structure, while maintaining the linear structure. Consider the equation
re-written

Y = Fo+ (81 + f3X2) X1 + foXo + €
= Bo+ P1 X1 + B2 Xo + €

where 1 = (81 + f3X2).

¢ Since 51 changes with X5, the effect of X; on Y is no longer constant.
— Adjusting X5 will change the impact of X; on Y

In R, use the notation X_ 1 : X_ 2 to include an interaction effect:

lm.synergy = 1lm(Sales ~ TV + Radio + TV:Radio, data=advert)
summary (1lm.synergy)

#>

#> Call:

#> Im(formula = Sales ~ TV + Radio + TV:Radio, data = advert)
#>

#> Residuals:

#> Min 10 Median 30 Max

#> —-6.3366 —-0.4028 0.1831 0.5948 1.5246

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>[|t])

#> (Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 #*x*
#> TV 1.910e-02 1.504e-03 12.699 <2e-16 #*+*
#> Radio 2.886e-02 8.905e-03 3.241 0.0014 *~*
#> TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 **+*
> ===

#> Signif. codes: 0 'x#x#x' 0.001 '"xx' 0.01 '+' 0.05 '." 0.1 " ' 1
#>

#> Residual standard error: 0.9435 on 196 degrees of freedom
#> Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673
#> F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
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1. Do you think the addition of an interaction helped? Why?

4.1.2 Predicted values in R

In R, the predict () function will return the predicted values from a fitted regression model. Besides the
model, the function needs the X values (the newdata argument) for making predictions.

- Type ?predict . 1lm to read the help pages

- The object argument is the 1m model

- The newdata mustbe a data.frame

# predict the Sales for a budget with TV = 50 ($50,000) and Radio = 20 ($20,000)
predict (1m.TVRadio, newdata=data.frame (TV=50,Radio=20))

#> 1
#> 8.968725

Your Turn #2

1. Suppose the company has a total advertising budget of $100,000. What is the predicted Sales
for the following scenarios using the 1m. TVRadio model
a. All budget to TV
b. All budget to Radio
c. Half budget to each
2. Suppose the company has a total advertising budget of $100,000. What is the predicted Sales
for the following scenarios using the 1m. synergy (interaction) model
a. All budget to TV
b. All budget to Radio
c. Half budget to each
3. How would you recommend investment?

4.2 Transforming Variables

In R, it is easy to manipulate the models. Here we can try some common transformations

11



#— Transforming predictors

Im(Sales ~ log(TV) + Radio , data=advert)

#>

#> Call:

#> Im(formula = Sales ~ log(TV) + Radio, data = advert)
#>

#> Coefficients:

#> (Intercept) log (TV) Radio

#> -9.1343 3.9338 0.2054

Im(Sales ~ log(TV) + sqrt(Radio) , data=advert)

#>

#> Call:

#> Im(formula = Sales ~ log(TV) + sqrt(Radio), data = advert)
#>

#> Coefficients:

#> (Intercept) log (TV) sqgrt (Radio)

#> -11.659 3.901 1.662

#— Transforming Response variable

Im(log(Sales) ~ TV + Radio , data=advert)

#>

#> Call:

#> Im(formula = log(Sales) ~ TV + Radio, data = advert)
#>

#> Coefficients:

#> (Intercept) TV Radio

#> 1.745078 0.003673 0.011985

# Warning: i1f you transform the response variable, you can no longer
# compare to other non-transformed models using Rsqg, etc.

4.2.1 Formula Specification in R

R provides a flexible formula interface for trying different model specifications. Here is a good resource

http://faculty.chicagobooth.edu/richard.hahn/teaching/FormulaNotation.pdf

S Regression Diagnostics

5.1 Topics

Checking for non-linearity
Correlation of error terms
Non-constant variance of error terms
Outliers

High Leverage points

Collinearity

AN S e
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http://faculty.chicagobooth.edu/richard.hahn/teaching/FormulaNotation.pdf

5.1.1 Anscombe’s Quartet

Anscombe's Quartet of ‘Identical’ Simple Linear Regressions
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5.2 In-sample vs. Out-of-Sample

Use a hold-out set or cross-validation to assess the performance of a model on future data

6 Logistic Regression

6.1 Logistic Regression

In R, use the glm () function with the family = binomial setting.

library (openintro)
data (email)
g <- glm(spam ~ to_multiple + winner + format, data=email,

family = binomial)
summary (g)
#>
#> Call:
#> glm(formula = spam ~ to_multiple + winner + format, family = binomial,
#> data = email)
#>
#> Deviance Residuals:
#> Min 10 Median 30 Max
#> —-1.3122 -0.3536 -0.3536 -0.3536 3.2057
#>

13



#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Coefficients:
Estimate Std.

(Intercept) -1.18678 0
to_multiple -2.39135 0
winneryes 1.49826 0
format -1.5541¢6 0
Signif. codes: 0 '"#x#xx' 0.

(Dispersion parameter for

Null deviance: 2437.2
Residual deviance: 2168.6
AIC: 2176.6

Error z

.08229 -1
.30149 -
.29817

.11571 -1

001 "x#'

binomial

on 3920
on 3917

value
4.423
7.932
5.025
3.431

0.01

Pr(>[z]/)

< 2e-16

2.16e-15
5.04e-07

T

< 2e-16

*

T

0.05

* Ak
* Ak
* Ak

* A A

T r

0.1

family taken to be 1)

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 6
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