09 - Importing Data

ST 597 | Spring 2017

University of Alabama
11-import.pdf
Contents
1 Getting Started
1.1 Required Packagesand Data
1.2 Using RStudio Import Tools e
2 Importing Flat Files
2.1 readrpackage e e
2.2 UnderstandingaDataFile
2.3 Another Example e
2.4 Delimited Files e e
2.5 FixedWidthFiles e
2.6 RFunctionstoknow
3 Parsing a File
3.1 StepsinDataImportof FlatFiles
3.2 col_typesargument u e e e e e e e e e e e e
33 col_namesargument e e e e e e e e e e e e e e e e e e
3.4 YourTurn: FlatFiles e
3.5 fileargument e e e e e e e e e e e e e
3.6 Saving/Exporting DataFrames oo
3.7 RFunctionstoknow e
4 Reading Excel Data Tables
4.1 readxlpackage e
42 ExampleFile e
43 read_excel () Options o i i e e e
44 RFunctionstoknow e
5 Data in Other Formats
5.1 Rdataformats (.rds, .Rdata)
5.2 SAS and SPSS e e
5.3 SQL and Relational Databases
5.4 Manual or Clipboard data with scan ()
5.5 RPFunctionstoknow

6 Case Study: APT
6.1 ThePerfectJob e

11
12
12
12
13

13
13
13
14
15

15
15
16
16
16
17

18

1 Getting Started

1.1 Required Packages and Data

Remember, you may need to install.packages ("pkgname") before you can load them.

library (tidyverse)
library (readxl)
library (stringr)

1.2 Using RStudio Import Tools

The recent versions of RStudio provide a GUI to help with file import. GotoFile -> Import Dataset
and choose the type of file: CSV, Excel, SPSS, SAS, or Stata.

Try an example.

Your Turn #1 : Zoo data

1. InRStudio, File —-> Import Dataset —> From CSV and enter the url for the zoo data
http://www.strategywise.com/Z00.csv.

2. Spend a few minutes trying to understand the options.

Import the data into R. Notice the code that runs in R.

4. (Optional/Alternative) Open a browser to http://www.strategywise.com/Zoo.csv which should
prompt you to download the Zoo . csv file. Save someplace where you can find it and then
direct RStudio to the file.

&2

2 Importing Flat Files

2.1 readr package

The readr package will provide our primary functions for importing flat data files, or tabular, into R. That
is, these data should naturally be imported into R as a data frame object. The general format is that each row
(record or observation) is separated by an end of line (EOL) character and the columns are determined by
either: i) delimiters (e.g., comma separated values) or ii) position (e.g., fixed width files).

2.2 Understanding a Data File

To get us started, we will take a simple example. Open your browser to the following url https://raw.
githubusercontent.com/mdporter/ST597/master/data/offers1.csv.

This is a .csv or comma separated value format. Can you see the role of the commas?

name, company, jobtype, location, salary
Tim, GammaRaise Capital, Hedge Fund, San Francisco, 87000
Christine, Integral Derivatives, Investment Bank,Chicago, 118000

http://www.strategywise.com/Zoo.csv
http://www.strategywise.com/Zoo.csv
http://en.wikipedia.org/wiki/Flat_file_database
https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.csv
https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.csv

Lance, Bigup-Side, Startup, "Washington, DC",20000

Bob, Stanguard, Grad School,NYC,20000

Gabrielle,Glitter, Startup, San Francisco, 65000

Nick, SocialNET, Startup,Boston, 128400

David, InnoTech,Big Software Firm, "Washington, DC",135600
Christine, Irreverent Technologies, Startup,NYC, 128400

David, ExcelMacroEconomics, Investment Bank, "Washington, DC",135600

Notice a few things:

 The first line is a header: it gives the column names.
* The columns are separated by commas.

* Each observation is on its own line.

* Why is Washington, DC in quotes?

We can import the data by rows with the read_lines () function:

n

url = "https://raw.githubusercontent.com/mdporter/ST597/master/data/offersl.csv
(lines = read lines (url))

#> [1] "name, company, jobtype, location,salary"

#> [2] "Tim, GammaRaise Capital,Hedge Fund, San Francisco, 87000"

#> [3] "Christine, Integral Derivatives, Investment Bank,Chicago,118000"

#> [4] "Lance,Bigup-Side, Startup, \ "Washington, DC\",20000"

#> [5] "Bob, Stanguard, Grad School,NYC,20000"

#> [6] "Gabrielle,Glitter,Startup, San Francisco, 65000"

#> [7] "Nick,SocialNET,Startup,Boston, 128400"

#> [8] "David, InnoTech,Big Software Firm, \"Washington, DC\",135600"

#> [9] "Christine, Irreverent Technologies,Startup,NYC,128400"

#> [10] "David, ExcelMacroEconomics, Investment Bank, \"Washington, DC\",135600"

This creates a character vector showing there are 10 rows. It is clear that each value in a row is separated
with a comma (hence, .csv extension). Sometimes the read_lines () function is helpful to understand a
new dataset.

Question: How does R know that there is a new line after . . ., salary in the first row?

We can actually see the raw file with the read_file () function:

(file = read file(url))
#> [1] "name, company, jobtype, location, salary\nTim, GammaRaise Capital,Hedge Fund, San Franci.

This function creates a single string of the entire file. Notice that after . . ., salary there is a new line
character \n. This indicates the start of a new line. When you hit Enter, your program is probably entering a
newline character.

2.3 Another Example

Your Turn #2 : Meta data problems

1. Try to load this via the RStudio importer: https://raw.githubusercontent.com/mdporter/ST597/
master/data/offers3.csv. Something is not correct.

2. Use read_lines () to help understand the problem.

3. Fix the problem and load this dataset into R.

2.4 Delimited Files

Delimited files use a delimiter (e.g. comma) to separate the values on a row. While you can always use the
function read_delim () and set the delim= argument, there are some handy shortcuts:

Delimiter Function Example of a row
Comma-separated: read_csv () 1.23,4.56,7.89
Semicolon-separated: read_csv2 () 1.23;4.56;7.89
Tab-separated: read_tsv () 1.234.56 7.89
Pipe-separated: read_delim(..., delim="|") 1.2314.5617.89

Check out the help for ?read_delim. Here is a description of some of the arguments (with their default
values)

read_delim(file, # path to a file or connection
delim, # character used to separate the fields
quote = "\"", # single character used to quote strings
col_names = TRUE, # 1f 'TRUE' will assume the first row 1s
column names. If the data does not have
column names, then this argument can be
a character vector of column names.
col_types = NULL, # specification of the type of data for
for each column
locale = default_locale(), # set country specific defaults
na = c¢("", "NA"), # character vector of what represents
missing values in the data
comment = "", # string used to denote comment lines
skip = 0, # number of lines to skip before reading data
n_max = -1) # maximum number of rows to read

read_delim () is looking for a table (data frame), so the data should have rows corresponding to observations
and columns corresponding to variables

Remember how quotes were used for "Washington, DC" in the csv file?
Notice that the quote= argument is only available with read_delim (), so if something other than double
quotes (") is used as a quote, then you must use this function instead of read_{csv, csv2, tsv}.

https://raw.githubusercontent.com/mdporter/ST597/master/data/offers3.csv
https://raw.githubusercontent.com/mdporter/ST597/master/data/offers3.csv
https://en.wikipedia.org/wiki/Delimiter-separated_values

Your Turn #3 : Import Delimited data

1. Try to load the file: https://raw.githubusercontent.com/mdporter/ST597/master/data/offers2a.txt.
2. Try to load the file: https://raw.githubusercontent.com/mdporter/ST597/master/data/offers2b.txt.

2.5 Fixed Width Files

Fixed width files are such that each column is a fixed width and there are no delimiters. Each column starts at
a certain distance from the beginning of the line.

An example of a fixed width file is http://dailydoseofexcel.com/excel/FixedWidthExample2.txt. Here are the
first 29 lines:

03/04/2013 Page 1
Period 01 Thru 03

4:16 pm

Company 200

Entry Per. Post Date GL Account Description Srce. Cflow Ref. Post Debit Credit Alloc.
16524 01 10/17/2012 3930621977 TXNPUES s1 Yes RHMXWPCP Yes 5,007.10 No
191675 01 01/14/2013 2368183100 OUNHQEX XUFQONY s1 No Yes 43,537.00 Yes
191667 01 01/14/2013 3714468136 GHAKASC QHJXDFM s1 Yes Yes 3,172.53 Yes
191673 01 01/14/2013 2632703881 PAHFSAP LUVIKXZ s1 No Yes 983.21 No
80495 01 11/21/2012 2766389794 XDZANTV s1 Yes TGZGMOXG Yes 903.78 Yes
80507 01 11/21/2012 4609266335 BWWYEZL s1 Yes USUKVMZO Yes 670.31 No
80509 01 11/21/2012 1092717420 QJYPKVO s1 No DNUNTASS Yes 848.50 Yes
80497 01 11/21/2012 3386366766 SOQLCMU s1 Yes BRHUMGJR Yes 7.31 Yes
191669 01 01/14/2013 5905893739 FYIWNKA QUAFDKD sl Yes Yes 9,167.93 Yes
191671 01 01/14/2013 2749355876 CBMJTLP NGFSEIS sl Yes Yes 746.70 Yes
191674 01 01/14/2013 4530359106 OTAVZGH ZUQFISZ sl Yes No 7,035.74 Yes
244819 01 02/04/2013 4679391677 EGHLQTI ABE sl Yes No 89,947.13 No
96062 01 11/30/2012 5996493062 KTSVTADFF EHEHFMX S1 Yes UBNQLRCC Yes 7.10 Yes
16527 01 10/17/2012 5595769375 ILCVJYC sl Yes HCVZOUMY Yes 321.19 Yes
191670 01 01/14/2013 1948028853 RPPDCWC UWODNIO sl Yes No 9,293.80 No
191672 01 01/14/2013 4938823703 CTMDXXP HXOXVFF sl Yes No 175.00 Yes
191668 01 01/14/2013 4207018603 DBZZULF QGDZQMD s1 Yes Yes 206.26 Yes

ENDING BALANCE PERIOD 01 30,788.27 141,242.32

* Notice how each column starts and ends at specific positions; the same for each row. Thus, each row is
exactly the same length.

* This is different than space or tab (tsv) delimiters which would just add spaces between the column
entries. In this case, the starting and stopping position of each column could be different in each row.

* Here is the approach using excel and ActiveX Data Objects, by the creator of the data.

2.5.1 AnR Way
» We will not tackle reading in the entire file now, but rather concentrate on working with the first table
to illustrate fixed width files.
* There are two things we need to do:

1. Find the rows that have the data
2. Find the positions of the columns

2.5.1.1 Find the rows with the data

https://raw.githubusercontent.com/mdporter/ST597/master/data/offers2a.txt
https://raw.githubusercontent.com/mdporter/ST597/master/data/offers2b.txt
http://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/introduction/getting_started/configuring_fixed_width_text_file_formats.htm
http://dailydoseofexcel.com/excel/FixedWidthExample2.txt
http://dailydoseofexcel.com/archives/2013/05/10/importing-fixed-width-text-files-with-activex-data-objects/

» There is some meta data in the first few rows, a space and dashes between the header and data, and the
same at the end of the data.
e Use read_lines () to see the line numbers

url = "http://dailydoseofexcel.com/excel/FixedWidthExample2.txt"
read lines (url, n_max=29)

Page

#> [1] "03/04/2013

#> [2] "Period 01 Thru 03 "

#> [3] "4:16 pm "

#> [4] "Company 200 "

#> [5] " "

#> [6] ""

#> [7] " Entry Per. Post Date GL Account Description Srce. Cflow Ref. Post Debit Credit
I 1= B B s
#> [o1 v

#> [10] " 16524 01 10/17/2012 3930621977 TXNPUES S1 Yes RHMXWPCP Yes 5,007.10
#> [11] "191675 01 01/14/2013 2368183100 OUNHOEX XUFQONY Sl No Yes 43,537.00
#> [12] "191667 01 01/14/2013 3714468136 GHAKASC QHJXDFM S1 Yes Yes 3,172.53

#> [13] "191673 01 01/14/2013 2632703881 PAHFSAP LUVIKXZ sl No Yes 983.21

#> [14] " 80495 01 11/21/2012 2766389794 XDZANTV S1 Yes TGZGMOXG Yes 903.78
#> [15] " 80507 01 11/21/2012 4609266335 BWWYEZL S1 Yes USUKVMZO Yes 670.31
#> [16] " 80509 01 11/21/2012 1092717420 QJYPKVO S1 No DNUNTASS Yes 848.50
#> [17] " 80497 01 11/21/2012 3386366766 SOQLCMU sl Yes BRHUMGJR Yes 7.31
#> [18] "191669 01 01/14/2013 5905893739 FYIWNKA QUAFDKD sl Yes Yes 9,167.93

#> [19] "191671 01 01/14/2013 2749355876 CBMJTLP NGFSEIS sl Yes Yes 746.70

#> [20] "191674 01 01/14/2013 4530359106 OTAVZGH ZUQFISZ S1 Yes No 7,035.74

#> [21] "244819 01 02/04/2013 4679391677 EGHLQTI ABE sl Yes No 89,947.13
#> [22] " 96062 01 11/30/2012 5996493062 KTSVTADFF EHEHFMX sl Yes UBNQLRCC Yes 7.10

#> [23] "™ 16527 01 10/17/2012 5595769375 ILCVJYC Sl Yes HCVZOUMY Yes 321.19
#> [24] "191670 01 01/14/2013 1948028853 RPPDCWC UWODNIO s1 Yes No 9,293.80

#> [25] "191672 01 01/14/2013 4938823703 CTMDXXP HXOXVFF s1 Yes No 175.00

#> [26] "191668 01 01/14/2013 4207018603 DBZZULF QGDZQMD S1 Yes Yes 206.26

#> [27] v

#> [28] " - - "
#> [29] " ENDING BALANCE PERIOD 01 30,788.27 141,242.32"

* It looks like:
— column names (header) on line 7
— data on lines 10-26
— we can use skip=9 and n_max=17 arguments to get the data

2.5.1.2 Find the positions of the columns

* 1 do not know of a simple way to do this. One way is to open the file in a text editor and manually
count the spaces.

* One way to do this in R is to use string manipulation tools from the st ringr package (which is part
of tidyverse but not automatically loaded)

* Read in the first few lines (including the header) and create a matrix with one column for each character

library (stringr) # need to load stringr package!

#— get first few lines (including the header)
all = read_ lines(url)
x = allle(7, 10, 11)] # only consider lines 7, 10, and 11

#- find the length of each row
str_length (x) # =132

#— use str_split_fixed() function to make matrix
n=length of row

pattern='' splits at every character

str _split_fixed(x, pattern='"', n=132)

Alloc.

No

Yes
Yes
No

Yes
No

Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
No

Yes
Yes

1n

#> 11 (,2) (,3) [,4) [,5) [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15
$> [1,] " " MEW npeoowgwo ompwoowgmlowowowowo wpm omew o wpwo o omowo o wow o owpn o wgw
$> [2,] " " Min wgn wSw o mpw o wgm o owow o wowoowgm o owlw o wow o owmow wjw o owgw W w
#> [3,] "1T MW wim wgw myw wsm o wow o wow o owgm o wlw o wow o mow wguw owiw w/w
#> [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]

#> [1,]1 "s" "e" no "D" "an ngw nan non non

#> [2,] "1" m7m m/mowpmowgmomgw o ompmo o wom W

#> [3,]1 "1" w4 m/mo mpwowgmo wim o w3w mowowow

This shows the line numbers clearly. Now it is a bit easier to see the beginning and end of each field.

e first column (Entry) spans 1-6

* second column (Per.) spans 9-12

¢ third column (Post Date) spans 13-22
* etc.

RStudio needs a visual aid to help reading in data (Like excel’s text to columns). This can be done in Shiny (R
code) as an addin. This would be a suitable class project.

2.5.2 Use read_ fwf () for reading fixed width files
The readr function read_fwf () is used to read in fwf data. There are two options for setting the column
positions (col_positions=):

a. Set the column widths using fwf_widths ()
b. Set the start and stop positions of each column with fwf_positions ()

Here I will use the fwf_widths () option, and setting the widths to span the 132 characters. Trusting
read_fwf() to take care of the extra white spaces

ends = ¢(8, 12, 22, 35, 63, 68, 73, 82, 86, 104, 124, 132)
widths = diff (c(0,ends)) # difference between ends
read_ fwf (url,

col_positions=fwf widths (widths),

skip 9,

n_max = 17)
#> # A tibble: 17 x 12
#> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#> <int> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 16524 01 10/17/2012 3.931e+09 TXNPUES S1 Yes RHMXWPCP Yes NA
#> 2 191675 01 01/14/2013 2.368e+09 OUNHQEX XUFQONY S1 No <NA> Yes NA
#> 3 191667 01 01/14/2013 3.714e+09 GHAKASC QHJXDFM S1 Yes <NA> Yes 3172.5
#> 4 191673 01 01/14/2013 2.633e+09 PAHFSAP LUVIKXZ S1 No <NA> Yes 983.2
#> 5 80495 01 11/21/2012 2.766e+09 XDZANTV S1 Yes TGZGMOXG Yes NA
#> 6 80507 01 11/21/2012 4.609e+09 BWWYEZL S1 Yes USUKVMZO Yes NA
#> 7 80509 01 11/21/2012 1.093e+09 QJYPKVO s1 No DNUNTASS Yes NA
#> 8 80497 01 11/21/2012 3.386e+09 SOQLCMU sl Yes BRHUMGJR Yes NA
#> 9 191669 01 01/14/2013 5.906e+09 FYIWNKA QUAFDKD S1 Yes <NA> Yes 9167.9
#> 10 191671 01 01/14/2013 2.749e+09 CBMJTLP NGFSEIS Sl Yes <NA> Yes 746.7
#> 11 191674 01 01/14/2013 4.530e+09 OTAVZGH ZUQFISZ Sl Yes <NA> No 7035.7
#> 12 244819 01 02/04/2013 4.679e+09 EGHLQTI ABE Sl Yes <NA> No NA
#> 13 96062 01 11/30/2012 5.996e+09 KTSVTADFF EHEHFMX S1 Yes UBNQLRCC Yes 7.1
#> 14 16527 01 10/17/2012 5.596e+09 ILCVJYC S1 Yes HCVZOUMY Yes NA
#> 15 191670 01 01/14/2013 1.948e+09 RPPDCWC UWODNIO S1 Yes <NA> No 9293.8
#> 16 191672 01 01/14/2013 4.939e+09 CTMDXXP HXOXVFF S1 Yes <NA> No 175.0
#> 17 191668 01 01/14/2013 4.207e+09 DBZZULF QGDZQMD S1 Yes <NA> Yes 206.3
#> # ... with 2 more variables: X11 <dbl>, X12 <chr>

Note: this reads in the data, but some of the columns are the wrong type (e.g. integers instead of characters,
character instead of date). We will use the col_types= argument to help read these in correctly.

2.5.2.1

More details

http://blog.revolutionanalytics.com/2016/02/you-can-now-extend-rstudio-with-add-ins.html

* If all columns are separated by at least one whitespace and does not use white space for missing values,
try the read_table () function. Note: this is not the same as read_tsv (), as read_table ()

requires each line to be same length (total width)

* You can let readr guess the column positions using col_positions=fwf_empty (file,

skip=).

* Both of these only work is special (easy) situations. I expect the usual situation will involve a

combination of read_lines (), stringr functions, and base R functions.

* Here is an example from ?read_fwf

fwf_sample <- system.file("extdata/fwf-sample.txt", package =
cat (read_lines (fwf_sample))

#>

#_

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

John Smith WA

418-Y11-4111 Mary Hartford

You can specify column positions in three ways:
1. Guess based on position of empty columns
read fwf (fwf_sample, fwf empty (fwf_sample))

Parsed with column specification:

cols(
X1 = col_character(),
X2 = col_character(),
X3 = col_character(),
X4 = col_character()

)

A tibble: 3 x 4

X1 X2 X3 X4
<chr> <chr> <chr> <chr>

1 John Smith WA 418-Y11-4111
2 Mary Hartford CA 319-219-4341
3 Evan Nolan IL 219-532-c301

2. A vector of field widths
read_fwf (fwf_sample, fwf_widths(c(2, 5, 3)))

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Parsed with column specification:

cols(
X1 = col_character(),
X2 = col_character(),
X3 = col_character()

)

A tibble: 3 x 3

X1 X2 X3
<chr> <chr> <chr>

1 Jo hn Sm ith
2 Ma ry Ha rtf
3 Ev an No lan

3. Paired vectors of start and end positions
read_fwf (fwf_sample, fwf positions(c(l, 4), c(2,
#> Parsed with column specification:

#>
#>
#>

cols(
X1 = col_character(),
X2 = col_character()

10)))

"readr")

CA

319-219-4341 E

#>)
#> # A tibble: 3 x 2

#> X1 X2
#> <chr> <chr>
#> 1 Jo n Smith
#> 2 Ma y Hartf
#> 3 Ev n Nolan

Your Turn #4 : Fixed Width Files

Read this file into R http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for

2.6 R Functions to know

e read_delim()

* read_csv ()

e read_csv2 ()

e read_tsv ()

e read_lines ()

e read_file()

e read_fwf (),

o fwf_widths (), fwf_positions (), fwf_empty ()
e read_table ()

3 Parsing a File

3.1 Steps in Data Import of Flat Files

1. Recognize the file format (csv, fwf, xIsx, etc.)
2. Find the lines of the data component of the file
* (Optional) additional preprocessing to clean up the mess
Identify the delimiters or positions of the columns
4. Read in the data
a. use the correct file format using read_ * ()
b. use the correct column parsing using the col_t ypes= argument

(98]

This section is concerned with 4b, how to set the col_types= argument.

3.2 col_types argument
* The basic strategy that the readr package takes is to initially read in all columns as a character and
then convert them using the specifications on the col_types= argument.

* If col_types is not set (default of col_types=NULL), then readr uses a heuristic to figure out
the data types of your columns:

http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for

— it reads the first 1000 rows and uses some (moderately conservative) heuristics to figure out the
type of each column.

— This is fast, and fairly robust.

— If readr detects the wrong type of data, you’ll get warning messages. readr prints out the first
five, and you can access them all with problems ().

* If readr does make the correct choice, you can manually set the column types with the col_types
argument. OR, you can use the RStudio import data tool.

3.2.1 Example

Consider the following example https://raw.githubusercontent.com/mdporter/ST597/master/data/offers4.csv
urld = "https://raw.githubusercontent.com/mdporter/ST597/master/data/offersd.csv"
read_csv (url4)

Parsed with column specification:
cols (
name = col_character(),
company = col_character(),
jobtype = col_character(),
location = col_character(),
salary = col_character(),
ID = col_character ()

A tibble: 9 x 6

name company jobtype location salary D

<chr> <chr> <chr> <chr> <chr> <chr>
1 Tim GammaRaise Capital Hedge Fund San Francisco $87,000 1-1-2016
2 Christine Integral Derivatives Investment Bank Chicago $118,000 2-1-2016
3 Lance Bigup-Side Startup Washington, DC $20,000 3-1-2016
4 Bob Stanguard Grad School NYC $20,000 4-1-2016
5 Gabrielle Glitter Startup San Francisco $65,000 5-1-2016
6 Nick SocialNET Startup Boston $128,400 6-1-2016
7 David InnoTech Big Software Firm Washington, DC $135,600 7-1-2016
8 Christine Irreverent Technologies Startup NYC $128,400 8-1-2016
9 David ExcelMacroEconomics Investment Bank Washington, DC $135,600 9-1-2016

There are two problems:

1. the salary column should be a number (i.e., remove the $ and ,)
2. the ID column should be a character vector and not a date object. Check the order of the values in the
original csv file!

3.2.2 Manually Setting the column types

There are 4 ways to set the column types

1. Use the RStudio data import tool and select the correct parsing
2. Use cols () or cols_only () functions

3. Use column type abbreviations

4. Manually convert the columns with e.g., mutate ()

Here is an example of using the cols () function (with abbreviations):
read_csv(url4d4, col_types =
cols (name="c", company="c", jobtype="c", location="c"

salary="n", # number column
ID = "c")) # character column
A tibble: 9 x 6
name company jobtype location salary D
<chr> <chr> <chr> <chr> <dbl> <chr>

10

https://raw.githubusercontent.com/mdporter/ST597/master/data/offers4.csv

1 Tim GammaRaise Capital Hedge Fund San Francisco 87000 1-1-2016
2 Christine Integral Derivatives Investment Bank Chicago 118000 2-1-2016
3 Lance Bigup-Side Startup Washington, DC 20000 3-1-2016
4 Bob Stanguard Grad School NYC 20000 4-1-2016
5 Gabrielle Glitter Startup San Francisco 65000 5-1-2016
6 Nick SocialNET Startup Boston 128400 6-1-2016
7 David InnoTech Big Software Firm Washington, DC 135600 7-1-2016
8 Christine Irreverent Technologies Startup NYC 128400 8-1-2016
9 David ExcelMacroEconomics Investment Bank Washington, DC 135600 9-1-2016

read_csv(url4, col_types="ccccnc") # use column type abbreviations directly

The options (with abbreviations) are:

* Special
— col_skip () [, -], don’t import this column.
— col_guess () [7], let readr guess
* Numbers
— col_integer () [i], integers.
— col_double () [d], doubles.
— col_number () [n], finds the first number in the field. A number is definedas a sequence of -,
“0-9”, decimal_mark and grouping_mark. This is useful for currencies and percentages.
* Dates and Times
— col_date (format = "") [D]: Y-m-d dates.
— col_datetime (format, tz), datetimes with given format. If the timezone is UTC (the
default), this is >20x faster than loading then parsing with st rptime ().
— col_datetime (format = "") [T]: ISO8601 date times
— col_time (format), times. Returned as number of seconds past midnight.
e Other
— col_logical () [1], containing only T, F, TRUE or FALSE.
— col_character () [c], everything else.
— col_factor (levels, ordered), parse a fixed set of known values into a factor

3.2.3 Other Settings

* If you only want to read in certain columns, use cols_only () (instead of cols ()).
— Oruse col_skip () or —.
* see the 1ocale= argument to set default decimal mark, date format, etc
* setthe .default=argument: col_types = cols(.default = col_character())
* The functions parse_* () can be used directly to convert a vector. These are appropriate for use in
mutate ()

read_csv (urli,
col_types=cols (
.default=col_character()) # all cols are character vectors
) %>%

mutate (salary = parse_number (salary))

* type_convert () parses an existing R data frame as if it was reading it in

3.3 col_names argument

The col_names= argument has three options:

11

1. TRUE (the default), which reads column names from the first row of the file

2. FALSE numbers columns sequentially from X1 to Xn

3. A character vector, used as column names. If these don’t match up with the columns in the data, you’ll
get a warning message.

3.4 Your Turn: Flat Files

Your Turn #5 : Flat Files

Read in the data from here https://raw.githubusercontent.com/mdporter/ST597/master/data/smoke.csv.
The description of the data from: http://data.princeton.edu/wws509/datasets/#smoking
* Check the delimiter
* do not read in the first column
¢ the age column should be an ordered factor with levels: age_levs = c(paste (start,
end, sep="-"), "80+")
* Note any problems with the data

3.5 file argument

The £ile argument can be the path (relative or absolute) to the file or a url.

* Absolute Path
— 'C:/Users/mporter/st597/data/sample.csv’
— Note: windows must use forward slash (/) (not default backslash)
* Relative Path (use getwd () to see where you are starting from)
- 'data/sample.csv'
- '../data/sampledata/sample.csv' (use .. for up directory)
« URL
— 'http://bama.ua.edu/~mdporter2/st597/data/grades.csv'
* Alsosee: getwd (), list.files (), file.choose ()

3.6 Saving/Exporting Data Frames

The readr functions can write data frames
e write_csv(),write_delim()

* write_excel_csv () is an excel ready csv file

Here is an example of using file.choose () to save the path.
x = data.frame (x=1:5, y=c('a','b','c','d','e"))
write_csv(x, path=file.choose())

12

https://raw.githubusercontent.com/mdporter/ST597/master/data/smoke.csv
http://data.princeton.edu/wws509/datasets/#smoking

3.7 R Functions to know

* cols(),col_only()

e cols_* ()

* parse_x* ()

* type_convert ()

e getwd (), list.files (), file.choose ()

e write_csv(),write_delim(),write_excel_csv ()

4 Reading Excel Data Tables
4.1 readxl package

library (readxl)

The readx1 package lets you load data from both the legacy .x1s and the modern xml-based .x1sx
formats into R.

* While readxl1 is part of tidyverse it is not loaded automatically, so you must load it with
library (readxl)
* Note: it is designed to work with tabular data stored in a single sheet. While it can get data from
different sheets, it does so one sheet at a time.
» Karl Broman has some good advice for organizing your data in spreadsheets so they can be reused.
There are only two functions in this package. read_excel () reads in data as a data frame

read_excel (path, sheet = 1, col_names = TRUE, col_types = NULL,
na = "", skip = 0)

And excel_sheets () lists the sheets in an excel spreadsheet.

excel_sheets (path)

4.2 Example File

The readx1 package includes some data. The following function will retrieve the path to the data.

data_path = system.file("extdata/datasets.xlsx", package = "readxl")

We can read in the first sheet (because the default sheet=1) with

library (readxl)
read_excel (data_path)
#> # A tibble: 150 x 5

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa

13

http://kbroman.org/dataorg/

#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # with 140 more rows

We can check the name of the sheets:

excel_sheets (data_path)

#> [1] "iris" "mtcars" "chickwts" "quakes"

OK, let’s try the quakes sheet

read_excel (data_path, sheet='quakes')
#> # A tibble: 1,000 x 5

#> lat long depth mag stations
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -20.42 181.6 562 4.8 41
#> 2 -=20.62 181.0 650 4.2 15
#> 3 -26.00 184.1 42 5.4 43
#> 4 -17.97 181.7 626 4.1 19
#> 5 -=20.42 182.0 649 4.0 11
#> 6 -19.68 184.3 195 4.0 12
#> 7 —11.70 166.1 82 4.8 43
#> 8 -28.11 181.9 194 4.4 15
#> 9 -28.74 181.7 211 4.7 35
#> 10 -17.47 179.6 622 4.3 19
#> # with 990 more rows

4.3 read_excel () Options

* path path to file (note: does not accept url at the moment)

* col_names if TRUE will assume the first row is column names. If the data does not have column
names, then this argument can be a character vector of column names

* col_types can be a character vector of column types (if you known what type of data each column
is). If you don’t know, it will guess.

— Note: the options for read_excel () are more limited than the readr package, so may need
touse mutate () and parse_« () to get desired results

* na to specify what constitutes a missing value (e.g., 99, N2&)

* skip number of rows to skip before reading data. First few rows may be information describing the
data.

Your Turn #6 : Excel

You can find an excel file on the course website https://raw.githubusercontent.com/mdporter/ST597/
master/data/offers1.x1sx

1. Load the data into R

2. Find the average salary.

14

https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.xlsx
https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.xlsx

4.4 R Functions to know

* read_excel ()
e excel sheets ()

5 Data in Other Formats

5.1 R data formats (.rds, .Rdata)

R has its own data formats if you know you will be using data in R exclusively. This is a great option when
all your collaborators will use R.

5.1.1 RDS format

You can preserve any single R object exactly (e.g., functions, data frames that include factor level information)
if you save it in an R format using the write_rds () function

write_rds (x, path, compress = c¢("none", "gz", "bz2", "xz"), ...)
* Of course, you will only be able to read it with R

* use . rds extension in the path.
* use the compress= argument to save storage space

Then read_rds () will read it back in.

5.1.2 .RData format

Multiple R objects can be saved with the save () function.

* List all the R objects to save first, separated by commas
* Extension .RData or .Rda (they are equivalent)
x = "Hello World!"
setosa = filter(iris, Species == 'setosa')
myfunction = median
save(x, setosa, myfunction, file="data/random.RData")

* Objects saved with save () can be loaded into the workspace with 1oad ()

rm(x, setosa, myfunction) # Remove these objects
myfunction = mean # change myfunction to mean (from median)
load ("data/random.RData") # Load them back into R
¢ Or use the RStudio Session —-> Load Workspace... and look for the file with .RData
extension.

Be careful, this will overwrite existing R objects with the same name (e.g. myfunction will
be overwritten back to median) without warning

15

5.1.3 Reading R Data from the web

You may need to wrap the url in the R function url () to establish a connection to web data.

Your Turn #7 : Load R Data

urll = 'https://raw.githubusercontent.com/mdporter/ST597/master/data/offersl
url?2 'https://raw.githubusercontent.com/mdporter/ST597/master/data/cars.RD

1. Read in the data https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.rds using
urll

2. Load the cars .RData https://raw.githubusercontent.com/mdporter/ST597/master/data/cars.RData
using url2

5.2 SAS and SPSS

* The haven package will allow you to read SAS and SPSS data into R.

* Also see the foreign package for reading and writing data stored by some versions of Epi Info,
Minitab, S, SAS, SPSS, Stata, Systat and Weka and for reading and writing some dBase files.

5.3 SQL and Relational Databases

http://cran.r-project.org/web/packages/dplyr/vignettes/databases.html

Generally, if your data fits in memory there is no advantage to putting it in a database: it will only be slower
and more hassle. The reason you would want to use dplyr with a database is because either your data is
already in a database (and you do not want to work with static csv files that someone else has dumped out for
you), or you have so much data that it does not fit in memory and you have to use a database.

* There is also a discussion of using R to work with databases in Chapter 3 of Spector’s book Data
Manipulation with R

5.4 Manual or Clipboard data with scan ()

Data can be entered manually or from the clipboard (i.e., copy data from excel or website) in a couple of
ways, but the most flexible is probably wiht scan ()

?scan ()

scan () will create a vector or list. Consider baseball’s 3000 Hit Club data http://en.wikipedia.org/wiki/
3,000_hit_club. We want to get the mean career batting average of the players. Select the data from the
Average column (may need to hold down the Ct r1 key to select a column) and copy (Ctrl + c). Thenin
R, type the following and hit Enter

x = scan()

Then paste the data and hit Enter again. R should tell you that it Read 30 items. Then

16

rds'
ta'

https://raw.githubusercontent.com/mdporter/ST597/master/data/offers1.rds
https://raw.githubusercontent.com/mdporter/ST597/master/data/cars.RData
https://cran.r-project.org/web/packages/haven/index.html
https://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/dplyr/vignettes/databases.html
http://en.wikipedia.org/wiki/3,000_hit_club
http://en.wikipedia.org/wiki/3,000_hit_club

mean (x)
#> [1] 0.3104

The scan () function is looking for numeric data by default. If we want to pass in other types of data, we
can adjust the what = argument. For example, repeat the process to copy the 7eam column

team = scan(what=character (), sep="\t")

and enter it into R (and another Enter). The sep= argument is also needed here. Notice that by default the
scan () function is looking for a whitespace separator. When we paste from the clipboard, R uses a tab
delimiter (\t means tab).

There are lots of options for scan () ; it is a flexible and handy function for quickly getting data into R.
Recipe 4.12 from R Cookbook has additional details.

* One way [use scan () is to read in the column headers when they are not in the same format as the
rest of the data (using skip=and nlines=1 arguments).

Using scan () with pasting data from a clipboard does not encourage reproducible research. It is meant to be
used for quick, ad hoc analysis. If the data will be further analyzed than saving the data (with details of where
and when you obtained the data) or setting up a direct read from source is necessary.

5.5 R Functions to know

e read_rds(),write_rds ()
e save (), load()

e url ()

e scan ()

17

6 Case Study: APT

6.1 The Perfect Job

APT Analytics company posted an optimization problem to match employees with employers.

6.1.1 The data

The first step is to examine the data. This is the data from Sample Input 1.

people
Amy | Academic
Bob | Entrepreneur

Charlie | Money Grubber

offers

Amy | MacroHard | Big Software Firm | Seattle

Amy | Stanguard College | Grad School | San Francisco
Amy | Dartboard Modeling | Hedge Fund | NYC

Bob | Bigup-Side | Startup | NYC

Bob | Questionable Tactics | Hedge Fund | San Francisco
Charlie | Cash-Money Inc. | Investment Bank | NYC
Charlie | Arbitrack | Hedge Fund | San Francisco
relationships

Bob | Amy | Dating
Bob | Charlie | Mortal Enemies

This data format is not very nice as it contains three datasets (people, offers, relationships) in a single file.

18

http://www.predictivetechnologies.com/careers/puzzles/the-perfect-job.aspx
http://www.predictivetechnologies.com/media/111395/inputfile1.txt

6.1.2 Scores

There is also the score data from the main webpage. I scraped these and saved them as csv (we will learn how
to scrape tables from web later in course). I did some slight cleaning to the column names and values.

st597data = 'https://raw.githubusercontent.com/mdporter/ST597/master/data’

Jobs

Each type of job has certain benefits and drawbacks along several dimensions:

url_job = file.path(st597data, 'scores_job.csv')

(scores_job = read_csv(url_job))

#> # A tibble: 5 x 5

#> jobtype Pay Hours Impact Learn
#> <chr> <int> <int> <int> <int>
#> 1 Big Software Firm 6 6 2 8
#> 2 Hedge Fund 8 8 4 6
#> 3 Investment Bank 10 10 3 4
#> 4 Startup 4 8 10 8
#> 5 Grad School 1 4 3 10
Personalities

Accordingly, different types of people have different sets of preferences across these job dimensions. These
preferences can be thought of as coefficients for the utility offered in each dimension:

url_personality = file.path(st597data, 'scores_personality.csv')

(scores_personality = read csv(url_personality))
#> # A tibble: 4 x 5

#> personality Pay Hours Impact Learn
#> <chr> <int> <int> <int> <int>
#> 1 The Money Grubber 10 =1l 4 2
#> 2 The Entrepreneur 4 =2 10 8
#> 3 The Slacker 1 -10 2 2
#> 4 The Academic 2 -6 8 10
Relationships

Lastly, people don’t consider their job choices in a vacuum; their utility derived from a job is a function
of both the job itself and the people around them. Since jobs are associated with specific geographies, the
geography of the job alone can have a sizable impact on people’s happiness:

url_relationships = file.path(st597data, 'scores_relationships.csv')
(scores_relationships = read_csv(url_relationships))

#> # A tibble: 4 x 2

#> relationship score

#> <chr> <chr>

#> 1 Mortal Enemies Cannot be in the same city

#> 2 Friends +20 to each person for same city

#> 3 Dating +50 to each person for same city

#> 4 Married Must be in the same city

19

	Getting Started
	Required Packages and Data
	Using RStudio Import Tools

	Importing Flat Files
	readr package
	Understanding a Data File
	Another Example
	Delimited Files
	Fixed Width Files
	R Functions to know

	Parsing a File
	Steps in Data Import of Flat Files
	col_types argument
	col_names argument
	Your Turn: Flat Files
	file argument
	Saving/Exporting Data Frames
	R Functions to know

	Reading Excel Data Tables
	readxl package
	Example File
	read_excel() Options
	R Functions to know

	Data in Other Formats
	R data formats (.rds, .Rdata)
	SAS and SPSS
	SQL and Relational Databases
	Manual or Clipboard data with scan()
	R Functions to know

	Case Study: APT
	The Perfect Job

