09 - R Basics Il

ST 597 | Spring 2017
University of Alabama

09-rbasics2.pdf

ST 597 | Sp 2017 1/50

Factor Vectors

Missing and Special Data

Formatting

Recoding

Working with Missing Values

Recoding Numerical Data

General Recoding

Functions

ST 597 | Sp 2017 2/50

Required Packages

library (tidyverse)

library (nycflightsl3)

below are part of tidyverse, but not auto loaded
library (stringr)

library (scales)

library (forcats)

ST 597 | Sp 2017 3/50

Factor Vectors

ST 597 | Sp 2017 4/50

Factor Vectors

Factors are like character vectors, but in addition to the elements
of the vector all possible (unique) values (or 1evels) are also

stored.

days — c(”Tue", "SUK", HMOHII’ "Fri", ”Thu", "Fri", "Wed”, "MOH", "MOI’I", "S'Jfl")
days.factor = factor (days) # convert to factor vector

days.factor # defaults to alphabetical order

#> [1] Tue Sun Mon Fri Thu Fri Wed Mon Mon Sun
#> Levels: Fri Mon Sun Thu Tue Wed

ST 597 | Sp 2017 5/50

Plotting Factors

In ggplot2 the level information determines the order of the
factors

#- ggplot2 requires data frames/tibbles
df = tibble(days, days.factor)

ggplot (df, aes(days.factor)) + geom_bar ()
equivalent to:
df $>% count (days.factor) $%>% ggplot () + geom _col (aes (days.factor, n

N,
24
8 III

daysfactor

ST 597 | Sp 2017 6/50

Factor Levels

| usually think of factors as a set of outcomes from a categorical
random variable, where the 1evels are the sample space.

levels (days.factor)

#> [1] "Fri" "Mon" "Sun" "Thu" "Tue" "Wed"
levels (days) # days is not a factor-it has no levels!
#> NULL

Notice that days. factor only has 6 days (missing sat). How
is R supposed to know you want days of the week?

ST 597 | Sp 2017 7/50

Setting Factor Levels

We can explicitly set the 1evels, and their order, when we
create the factor

dow = C("MO]’I", "Tue", “Wed", "Thu", "Fri", "Sat", "SUH")

df = mutate(df, days.factor = factor(days, levels = dow))
levels (df$days.factor)

#> [l] "Mon " "Tue" "Wed" "Thu" "Ffi " "Sat" "SUI’I"

ggplot (df, aes(days.factor)) + geom bar() +
scale_x_discrete (drop=FALSE) # this is used to perserve 0 counts

aaaaaaa

ST 597 | Sp 2017 8/50

Plotting order with reorder ()

Recall that we can use the reorder () function to create a
factor with levels ordered by another variables

y = count (diamonds, cut)
ggplot (y, aes(cut, n)) + geom col ()
ggplot (y, aes(reorder(cut, -n), n)) + geom_col ()

ST 597 | Sp 2017

9/50

More Factors Help

The tidyverse package forcats provides many nice
conveniences for working with factors.

ST 597 | Sp 2017 10/50

Missing and Special Data

ST 597 | Sp 2017 11/50

Missing Data

It is common to find missing elements in data. R uses N2A (“Not
Available”) to represent missing data.

m=c¢(l,2,NA,1,5,5,NR) # NA doesn't change 'type' of vector
class (m)

#> [1] "numeric"

m

#> [1] 1 2 NA 1 5 5 NA

Just use the letters Na since it is a “reserved” word in R (don'’t
use quotations).

m2 = ¢(1,2,"NA",1,5,5,"NA") # oops, "NA" is a character.
class (m2)

#> [1] "character"

m2

#> [1] "i" "2" "NA" "1™ m5mo m5mo UNAM

That converts everything to a character!
ST 597 | Sp 2017 12/50

Special Data
You may run across some other special words:
» NULL stands for “nothing”
c(l,2,NULL, 3, 4,NULL, 5)
3 4 5

#> [1] 1 2

» NaN (Not a Number)
» Inf and -Inf for infinite values

Try these:

5/0

0/5

0/0
log (0)
log(-1)

ST 597 | Sp 2017 13/50

Formatting

ST 597 | Sp 2017 14/50

Formatting numbers

Useful for

» labels in plots
» results in tables
» getting more information on screen

ST 597 | Sp 2017 15/50

Formatting numbers

The function round () will round numeric data.

x = c(l.1, 2.22, 3.333, 4.4444)

round (x, digits=2)

#> [1] 1.10 2.22 3.33 4.44
round (x, digits=0)

#> [1] 1 2 3 4

Use the scales package to convert to percentage, dollars,
scientific:

library (scales) # required package

percent (x)

#> [1] "110%8" "222%" "333%" "444%"

dollar (x)

#> [1] "$1.10" "$2.22" "S$S3.33" "S4.44"

scientific (xx100)

#> [1] "1.10e+02" "2.22e+02" "3.33e+02" "4.44e+02"

ST 597 | Sp 2017 16/50

Formatting Numbers

The paste () function is helpful for adding general units

paste("\u20ac",x, sep='") # euros
paste(x, 'cm')
#> [1] "1.1 cm" "2.22 cm" "3.333 cm" "4.4444 cm"

And paste () can also be used to make a character string using
the collapse= argument

paste(x, collapse=',")
#> [1] "1.1,2.22,3.333,4.4444"

ST 597 | Sp 2017 17/50

Recoding

ST 597 | Sp 2017 18/50

Recoding Definition

Recoding is the process of changing the values of elements in a
vector/column

converting data types

replacing NA (missing) with values
replacing values with NA (missing)
binning numerical data

general replacement

vV vy VvYyVvyy

ST 597 | Sp 2017 19/50

Data

We will make use of these data

data (flights) # flights that departed NYC (i.e. JFK, LGA or EWR) in
data (economics) # US economic time series
data (midwest) # Midwest demographics

select a few variables from midwest data
mw = select (midwest, PID:popdensity, percollege, inmetro:category)

ST 597 | Sp 2017 20/50

Converting data types

Use the as.<datatype> () functions

data (midwest)
mw %>% mutate (PID = as.character (PID), inmetro=as.logical (inmetro))

ST 597 | Sp 2017 21/50

Extracing date components

Recall the format .Date () to extract date elements

economics %>% mutate (day = format (date, '%a'),
month=format (date, '%b'),
year=format (date, '%Y'"))

ST 597 | Sp 2017 22/50

Working with Missing Values

ST 597 | Sp 2017 23/50

Working with missing values (NA’s)

» In R, NA represents missing.

» In practice, you should know why data are missing. It can
have big implications for your analysis.

» In general, there are two approaches to handling missing
values:

Remove observations with missing values

replace missing values (statistical imputation)

both of these are dangerous!

if you run into this problem, try a few options to examine the
sensitivity of the results

vV vy vVvyYy

ST 597 | Sp 2017 24/50

Removing NA'’s

Remove observations with missing values using !is.na ()

flights %>% filter(!is.na(arr_delay)) %>% nrow() # not cancelled flig
#> [1] 327346

Ignoring missing values with na . rm=TRUE argument

mean (flights$arr_delay, na.rm=TRUE)
#> [1] 6.895377

ST 597 | Sp 2017 25/50

Replacing NA’s with coalesce ()

NA elements in a vector can be replaced with coalesce ()

(x = c¢(NA, 1:4, NA))
#> [1] NA 1 2 3 4 NA
coalesce (x, OL) # replace NA with 0L (must be integer)

#> [1] 0 1 2 3 4 0

[coalesce () requires the replacement to be the same data type as x!]

coalesce (as.numeric (x), mean(x, na.rm=TRUE))
#> [1] 2.5 1.0 2.0 3.0 4.0 2.5

ST 597 | Sp 2017 26/50

Replaceing all NA’s in a data frame

We can replace all Nas in a data frame with the command

(df tibble (x=c (NA,
#> # A tibble: 6 x 2
#> X v

#> <int> <chr>

#> 1 NA a

#> 2 1 b

#> 3 2 <NA>

#> 4 3 <NA>

#> 5 4 @

#> 6 NA d

df [is.na(df)] = 0
df

#> # A tibble: 6 x 2
#> x y

#> <dbl> <chr>

#> 1 0 a

#> 2 1 b

#> 3 2 0

#> 4 3 0

#> 5 4 @

#> 6 0 d

ST 597 | Sp 2017

y=c('a','b',NA,NA, 'c','d"

27/50

Replace values with NA

Sometimes data imported from other places using something

other than NA to indicate missing values

#- missing values are coded as -999
(x = c(1l:4, -999)

#> [1] 1 2 3 4 -999
na if(x, -999)
#> [1] 1 2 3 4 NA

We will discuss better ways of doing this when we cover data

import.

ST 597 | Sp 2017

28/50

Recoding Numerical Data

ST 597 | Sp 2017 29/50

Simple Binning

The ifelse (test, yes, no) function can create simple
bins

#- county is 'big' if population over 100,000
mw $>% transmute (county, poptotal,
size = ifelse (poptotal>100000, "big", "small"))

Ornest ifelse () to get three levels

mw.size = mw $>%
transmute (county, poptotal,
size = ifelse (poptotal>100000, "big",
ifelse (poptotal>50000, "medium", "small")))
count (mw.size, size)
#> # A tibble: 3 x 2

#> size n
#> <chr> <int>
#> 1 big 85
#> 2 medium 69

#> 3 small 283

ST 597 | Sp 2017 30/50

Remember the Factors Levels

mw.size = mutate (mw.size,
size2=factor (size,
levels=c('small', 'medium', 'large')))
ggplot (mw.size, aes(size)) + geom_bar () # left
ggplot (mw.size, aes(size2)) +geom_bar () # right

ST 597 | Sp 2017 31/50

Binning Numerical Data

It is sometimes useful to convert numerical data to categorical.
The numeric data would usually be converted to an ordered
factor.

v

Histograms use bins to count similar valued observations

» but remember, geom_density () isn’t sensitive to bin origin

v

analysis can be simplified by reducing the complexity of a
variable

» summary tables

v

quantile based colors for choropleth maps
but, you lose data!

v

ST 597 | Sp 2017 32/50

Binning

The functions cut_width (), cut_interval (), and
cut_number (), are handy to discretize numeric data.
x=1:100

#- cut_interval with n makes n groups with equal range
cut_interval (x, n=5) # 5 groups

#- cut_interval with length makes group
cut_interval (x, length=25) # intervals of width 25

#- cut_width allows more generic width
cut_width (x, width=25, boundary=1) # intervals of width 25

#- cut_number puts about equal observations in each bin
cut_number (x, n=4) # quartiles

ST 597 | Sp 2017 33/50

Quantile Binning

Quantile binning attempts to group an equal number of
observations in each bin.

x =c(l,1, 2,2, 3,3, 4,4)

cut_number (x, 3) # creates breaks based on values
#> [1] [1,2)] [1,2] [1,2] [1,2] (2,3] (2,3] (3,4] (3,4]
#> Levels: [1,2] (2,3] (3,4]

ntile(x, 3) # doesn't consider ties

#> [1] 111222 33

[ntile () splits data exactly into equal bins, but doesn’t respect ties!]

ST 597 | Sp 2017 34/50

The cut () function

Learn the cut () function to have full control

bks = ¢(0, quantile (mw$poptotal, probs=c(.25, .50, .75)), Inf)
mw $>%
transmute (county, poptotal,
size = cut (poptotal, breaks=bks,
labels=c('small', 'med_small', 'med_large', 'large')))
#> # A tibble: 437 x 3

#> county poptotal size
#> <chr> <int> <fctr>
#> 1 ADAMS 66090 med_large
#> 2 ALEXANDER 10626 small
#> 3 BOND 14991 small
#> 4 BOONE 30806 med_small
#> 5 BROWN 5836 small
#> 6 BUREAU 35688 med_large
#> 7 CALHOUN 5322 small
#> 8 CARROLL 16805 small
#> 9 CASS 13437 small
#> 10 CHAMPAIGN 173025 large
#> # with 427 more rows

ST 597 | Sp 2017 35/50

Using binning

ggplot (mw, aes (poptotal, percollege)) +
geom_smooth () + geom point ()

#> ‘geom_smooth () using method = 'loess'

mw %$>% mutate (size=cut_number (poptotal, 5)) %$>%
ggplot (aes (size, percollege)) + geom boxplot ()

1

percalege

poptoe

ST 597 | Sp 2017

et

36/50

Using binning

mw %$>% mutate (size=cut_number (poptotal,

group_by (size)

#> # A tibble: 5 x 4

#>
#>
#>
#>
#>
#>
#>

G W N =

ST 597 | Sp 2017

size
<fctr>

[1.7e+03,1.65e+04]
(1.65e+04,2.83e+04]
(2.83e+04, 4.2e+04]
(4.2e+04,9.61e+04]
(9.61e+04,5.11e+06]

<int>
88
87
87
87
88

14

%$>% summarize (n=n¢(),
mean=mean (percollege),
sd=sd (percollege))

mean
<dbl>

. 70660
15,
16.
19.
24.

47246
59473
82750
72916

5)) %>%

sd
<dbl>

.179170
.924847
.863858
.867889
.367284

37/50

General Recoding

ST 597 | Sp 2017 38/50

Merging Factor Levels

Factors with many levels can be annoying. Sometimes we can
get away with lumping together the infrequent values into an
“other” category

count (mw, category, sort=TRUE) # has 16 categories

library (forcats)
mutate (mw, cat2=fct_lump (category,prop=.05)) %>% count (cat2)

Or, keep/collapse certain levels

#- keep levels that begin with A

library (stringr)

levs = unique (mw$category)

Alevs = levs[str_sub(levs, 1, 1) == 'A']

mutate (mw, catA=fct_other (category, keep=Alevs)) %$>% count (cath)

ST 597 | Sp 2017 39/50

Recode from Lookup Tables

We can used a named vector to match new values

x = c¢("DL", "DL", "AA", "DL", "AA")
lut = e¢("AA"="American", "DL"="Delta")

lut [x]

#> DL DL AA DL AA
#> "Delta" "Delta" "American" "Delta" "American"

#- An alternative way to get lut:
lut=c("American", "Delta"); names(lut) = c("AA", "DL")

Explicitly enter old/new pairs with recode ()

recode (x, DL="Delta", AA="American")
#> [1] "Delta" "Delta" "American" "Delta" "American"

Use match () for vectors (or data frame) with old/new values

old = c¢('DL', 'AA'")

new = c¢('Delta', 'American')

new [match (x, old)]

#> [1] "Delta" "Delta" "American" "Delta" "American"

ST 597 | Sp 2017 40/50

Using joins

We will get to joins next week, but here is a preview of how this
can be used for recoding (and more).

Check out the wikipedia page on airline codes https:
//en.wikipedia.org/wiki/List_of_airline_codes.

read in the table
library (rvest)

url = "https://en.wikipedia.org/wiki/List_of_airline_codes"
tab = url $>% read html() %>%

html_node ("table.wikitable") %>%
html_table (fill=TRUE) $%>%
select (-NA) # remove extra column

#—- Join the table with x values

tibble (x) %>% # make x into tibble
left_join(tab, by=c("x"="IATA")) # join with tab
#> Error in x[needs_ticks] <- pasteO("'", gsub(" ", "\\\\'", x[needs_t

ST 597 | Sp 2017 41/50

https://en.wikipedia.org/wiki/List_of_airline_codes
https://en.wikipedia.org/wiki/List_of_airline_codes

Functions

ST 597 | Sp 2017 42/50

Function Help

We have already used many built-in R functions. E.g.,

seq(0, 1, by=0.25)
#> [1] 0.00 0.25 0.50 0.75 1.00

Let’'s examine this function in more detail. To get the help page,

?seq

(or you could type: help (seq))

If you don’t know the function name, try

??sequence
help.search ("sequence") # this is same as ??sequence

or web search.

ST 597 | Sp 2017 43/50

Function Defaults

Some functions have default values that will be used unless you
specify an alternative.

Notice the text

Default S3 method:
seqg(from = 1, to = 1, by = ((to — from)/(length.out
length.out = NULL, along.with = NULL, ...)

It tells you that the default value of from=1 and to=1, etc. So if
| pass in no arguments, the function will return the vector 1:1

seq ()
#> [1] 1

ST 597 | Sp 2017 44/50

Function Defaults

If you specify some of the arguments, the others stay at their
default values:

seq (to=8)

#> [1] 1 2 3 456 78

seq(to=2, by=0.25)

#> [1] 1.00 1.25 1.50 1.75 2.00

seq(from=0, by=0.10)

#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

From help page:

Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

ST 597 | Sp 2017 45/50

Function Arguments: by name

It is probably best practice to assign arguments by name:

seq(from=0, to=1, length.out=11)

#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
seq(from=0, to=1, by=0.1)

#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

» But it is common for first two arguments to be assigned by
position only.
Notice that sometimes only one argument can be used at a time:

seq(from=0, to=1, by=0.1, length.out=11)
#> Error in seq.default (from = 0, to = 1, by = 0.1, length.out = 11):

ST 597 | Sp 2017 46/50

Function Arguments: by name

Names can be determined by partial string match:

seq(from=0, to=1, length.out=11)
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.
seq(from=0, to=1, length=11)

#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.
seq(from=0, to=1, len=11)

#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.

And named in any order

seq(len=11, to=1, from=0)
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.

ST 597 | Sp 2017

6

full name

0.7 0.8 0.9 1.
partial name
0.7 0.8 0.9 1.
partial name
0.7 0.8 0.9 1.

0.7 0.8 0.9 1.

47/50

Function Arguments: by position

For the function seq (), the first argument is from, the second
is to, etc.

Instead of writing the names, we can just enter the values in the
correct order

seq(0, 1, 0.1) # seq(from=0, to=1, by=0.1)
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ST 597 | Sp 2017 48/50

Function Arguments: dot-dot-dot

Sometimes you will see an ellipsis (...) as a function argument.

This means that the function may call another function which can
get additional arguments.

We won't be too concerned with this, but here is a good example:

?plot

plot (1:10, 1:10, typ='1l")

plot(1:10, 1:10, typ='p',
xlab="The x-axis label",
ylab="The y-axis label",
main="plot title here")

ST 597 | Sp 2017 49/50

Your Turn #1 : Functions

Use the following data to answer the questions

scores = ¢(98,100,NA,78,92,88,NA,NA,91,89,97,88,99)

1. What is the mean of scores? (Hint: ?mean and
argument na . rm)
What is trimmed mean of scores? Trim 20% of values.
What is the median of scores?
Find a function to sort scores from smallest to largest.
What does the function summary do?
summary (scores)
6. What does this do: quantile (scores,

probs=c (0, .1,.5,.99), na.rm=TRUE)
7. Compare min (scores, na.rm=TRUE) to

pmin (scores, 90)

O R LD

ST 597 | Sp 2017

50/50

	Factor Vectors
	Missing and Special Data
	Formatting
	Recoding
	Working with Missing Values
	Recoding Numerical Data
	General Recoding
	Functions

