
08 - R Basics I

ST 597 | Spring 2017
University of Alabama

08-rbasics.pdf

ST 597 | Sp 2017 1/51

Assigning Variable

Data Types

Vectors

Creating Vectors

Vector Indexing

ST 597 | Sp 2017 2/51

Required Packages

library(tidyverse)
library(nycflights13)
library(stringr) # stringr is part of tidyverse,

but not auto loaded

ST 597 | Sp 2017 3/51

R Manuals

If you want to know (almost) everything about the R language,
check out the manuals
http://cran.r-project.org/manuals.html.

Especially these two: - An Introduction to R

I The R language definition

Another good reference is Hadley Wickham’s R Vocabulary

ST 597 | Sp 2017 4/51

http://cran.r-project.org/manuals.html
http://cran.r-project.org/doc/manuals/r-release/R-intro.html
http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://adv-r.had.co.nz/Vocabulary.html

Assigning Variable

ST 597 | Sp 2017 5/51

Setting Variables

Use the assignment operator (<- or =) to save an object. Here
we will create the data frame object named x

x = tibble(a=1:5, b=a+5) # remember tibble() requires dplyr

Notice that the object named x shows up in the environment.

If we want to see it, we can View(x) or just type x in console.

x
#> # A tibble: 5 × 2
#> a b
#> <int> <dbl>
#> 1 1 6
#> 2 2 7
#> 3 3 8
#> 4 4 9
#> 5 5 10

ST 597 | Sp 2017 6/51

Setting variables

And now we can work with x

mutate(x, c=2*b)
#> # A tibble: 5 × 3
#> a b c
#> <int> <dbl> <dbl>
#> 1 1 6 12
#> 2 2 7 14
#> 3 3 8 16
#> 4 4 9 18
#> 5 5 10 20

I Notice that we didn’t create a new variable, we just printed
results to screen

- Can we now use filter() to select all rows with c > 15?

ST 597 | Sp 2017 7/51

Variable naming

Variable names can contain any alphanumeric characters along
with periods (.) and underscores (_), but they cannot start with a
number or underscore.

Some examples:

var_1 <- 10+1
var.2 <- 22
Var.2 <- 222
my_var.2_3 = 23
.x = 5

Be careful, R is case sensitive:

Var_1
#> Error in eval(expr, envir, enclos): object 'Var_1' not found

Oops, did I mean lowercase var_1?

var_1
#> [1] 11

ST 597 | Sp 2017 8/51

Variable naming

You cannot name objects with reserved words like:

I TRUE, FALSE, NA, if, next, function

See the help:

?reserved

for a full list of reserved words.

ST 597 | Sp 2017 9/51

Variable re-assignment

If you don’t like a variable, you can write over it

x = tibble(a=1:5, b=a+5) # make initial x
x = mutate(x, c=2*b) # create new modified x
x = 0 # now set x = 0

If you really want to get rid of it, use rm()

rm(x) # Auf Wiedersehen!

ST 597 | Sp 2017 10/51

Data Types

ST 597 | Sp 2017 11/51

Data Types

There are five types of data that we will encounter today:

1. numeric (or double)
2. integer
3. character (string)
4. logical (TRUE/FALSE)
5. Date

The type of data contained in a variable can be obtained with the
function class()

x = 0
class(x) # numeric
class(0L) # integer
class("zero") # character
class(0 == "zero") # logical

ST 597 | Sp 2017 12/51

Numeric Data

Numeric Data is represented as either

I numeric (double or floating point)
I integer

When you type a number into R, it will assign it as a double. If
you really need an integer (which is not often), you can append
the number with the capital letter L.

x = 5
class(x)
#> [1] "numeric"
y = 5L
class(y)
#> [1] "integer"

ST 597 | Sp 2017 13/51

Numeric Data Operations

I When you do math operations, R will automatically convert
integers to numeric when needed

x = 2L # integer 2
x + 1.25 # integer + double = double
#> [1] 3.25

I And numeric variables will be converted to integers for
indexing

x = c(1.1, 2.2, 3.3) # this is a vector of doubles
x[3] # return 3rd element. as x[3L]
#> [1] 3.3

Internally, R converts the 3.000 to an integer x[3L].

What do you think x[2.9] will return?

ST 597 | Sp 2017 14/51

Character Data

Instead of using numbers, we can use character data (or
strings).

To create a character variable, enclose it in quotes (single or
double):

x = "French Toast"
y = 'Bacon and Eggs'

Some useful functions for character manipulation are found in
the stringr package

library(stringr) # install.packages("tidyverse")

While the stringr package is installed with tidyverse, it needs to be loaded
explicitly with library(stringr)

ST 597 | Sp 2017 15/51

Your Turn #1 : Character Data Manipulation

Ensure you have the following objects in your environment

x = "French Toast"
y = 'Bacon and Eggs'

1. Load the stringr R package. ?stringr
2. Use the function str_length() to find how many

characters are in x and y. (Remember to type
?str_length for help.)

3. Use str_to_lower() to convert everything to
lowercase.

4. Remove the “and” from y using str_replace()

ST 597 | Sp 2017 16/51

Logicals

Logical data are either TRUE or FALSE.

You can get a logical by using the reserved words:

a = TRUE
b = FALSE

Or by comparing two things (<, <=, >, >=, ==, !=):

2 == 3 # Does 2 equal 3?
2 != 3 # Does 2 not equal 3?
2 < 3 # Is 2 less than 3?
2 <= 3 # Is 2 less than or equal to 3
"case" == "Case" # Is R case insensitive?
3+2 > 4 # logical operators have lower precedence than arithmetic

ST 597 | Sp 2017 17/51

Logical Math

If you use math with a logical, it will convert it to a numeric
(TRUE=1, FALSE=0)

win = .5 > runif(1) # Did you win?
prize = win * 3 # If you won, your prize is $3, else its $0.
prize
#> [1] 3

ST 597 | Sp 2017 18/51

Dates

R recognizes calendar dates. Dates are created with the
as.Date() function. The default format is ISO 8601 standard
of: year-month-day

date1 = as.Date("2017-02-20")
date1
#> [1] "2017-02-20"
class(1)
#> [1] "numeric"

But we can accept dates in other formats using the format=
argument

date2 = as.Date("2/20/17", format="%m/%d/%y")
date1 == date2
#> [1] TRUE

ST 597 | Sp 2017 19/51

Date Format

There is also a format() function that will extract elements of
the date.

format(date1, "%d:%m:%Y")
#> [1] "20:02:2017"

The codes %d, %m, and %y extracts the day, month, and year.

The full list of date (and time) codes found in ?strptime,

ST 597 | Sp 2017 20/51

Date Format: Codes

code component value

%y year year without century (00-99, e.g., 17)
%Y year year with century (e.g., 2017)
%b month month name (abbreviated)
%B month month name (full)
%m month month number (01-12)
%d day day of month number (01-31) double digits
%e day day of month number (1-31) single digits
%j day day of year (001-336)
%a day day of week name (abbreviated)
%A day day of week name (full)
%u day day of week number (1-7, Monday is 1)
%w day day of week number (0-6, Sunday is 0)
%U week week of year (00-53) using Sunday as first day 1 of the week
%V week week of year (01-53) using ISO 8601 standard
%W week week of year (00-53) using Monday as first day of week

ST 597 | Sp 2017 21/51

Date Format: Example

(today = as.Date("Feb 20, 17", format="%b %d, %y"))
#> [1] "2017-02-20"

format(today, "%m/%d/%Y") # usualy US date convention
#> [1] "02/20/2017"
format(today, "%a=%u, %m=%B") # extracting day and month
#> [1] "Mon=1, 02=February"

ST 597 | Sp 2017 22/51

Date Math

Behind the scenes, R treats dates as the number of days since
Jan 1, 1970, but prints dates out as characters.

date1 = as.Date("2017-02-20")
date2 = as.Date("1970-01-01")

date1 + 1
#> [1] "2017-02-21"
date1 + 365
#> [1] "2018-02-20"
date1 - date2
#> Time difference of 17217 days
as.numeric(date1)
#> [1] 17217
as.numeric(date2)
#> [1] 0

ST 597 | Sp 2017 23/51

Conversion between data types

We can convert between data types with as.<format>.

(x = tibble(a=1:3, b=c('001', '02', '3'), c=c(1.2, 2.6, 3.99999)))
mutate(x, a=as.character(a), b=as.integer(b), c=as.integer(c))

ST 597 | Sp 2017 24/51

Vectors

ST 597 | Sp 2017 25/51

Vectors

A vector is a collection of elements (or contiguous cells of data).

In R, vectors must all be of the same type (e.g., all numeric,
integers, logicals).

We have actually been using vectors that consists of a single
element, e.g.

x <- 1L # remember 1L is the integer 1
y <- 1/3
z <- "Pancakes" # I must be thinking about breakfast

Recall that each column of a data frame/tibble is a vector.

ST 597 | Sp 2017 26/51

Column Vectors from data frames

A column vector can be extracted from a data frame with $ or [[
]]

data(flights)
dd = flights$dep_delay # extract column with $
ad = flights[["arr_delay"]] # extract column with [[]]

ST 597 | Sp 2017 27/51

Vector Creation with c()

Vectors can be created with function c() for combine:

v1 = c(1,2,3)
v1
#> [1] 1 2 3
v2 = c("Porter", "ST597", "Statistics")
v2
#> [1] "Porter" "ST597" "Statistics"

The function length() gives the number of elements in the
vector

length(v2) # the number of elements that are in the vector
#> [1] 3

ST 597 | Sp 2017 28/51

Vector Coersion

Warning: R will automatically (and without warning) change the
class of a vector so all objects are of the same type.

The coercion rules place: character > numeric > integers
> logical

c(1,2,"three") # all become characters
#> [1] "1" "2" "three"
c(1,2,FALSE) # the logical becomes numeric
#> [1] 1 2 0
c(1L,2L,3) # integers go to doubles
#> [1] 1 2 3

ST 597 | Sp 2017 29/51

Vector Operations

I vectors are at the heart of R (vectorized language)
I many R operators are applied to each element of vector

automatically (without loops)

x = c(1,2,3,4,5)
x + 10
#> [1] 11 12 13 14 15
x^2
#> [1] 1 4 9 16 25

v2 = c("Mike", "ST597", "Statistics ")
str_length(v2) # number of characters in each element (watch whitespaces)
#> [1] 4 5 15

ST 597 | Sp 2017 30/51

Multiple Vector Operations

Consider two vectors:

x = c(1,2,3,4,5)
y = c(5,4,3,2,1)

x + y
x - y
x^y

x >= y
#> [1] FALSE FALSE TRUE TRUE TRUE

The dplyr functions mutate() performs vector operations. And the filter()
function vector comparisons.

mutate(flights, gain = arr_delay - dep_delay)
filter(flights, arr_delay <= 0)

ST 597 | Sp 2017 31/51

Vector Recycling

R has several interesting features. One is vector recycling.

x = c(1,2,3,4,5,6) # length(x) = 6
y = c(1,2) # length(y) = 2

What do you think should happen if you add x + y?

z = x + y # Really R, no warning message?
z
#> [1] 2 4 4 6 6 8
length(z)
#> [1] 6

Can you figure out what happened?

ST 597 | Sp 2017 32/51

Vector Recycling Details

Shorter vectors (e.g., y) is recycled (expanded) so its length is
same as x.

So x + y is actually

c(1,2,3,4,5,6) + c(1,2,1,2,1,2)
#> [1] 2 4 4 6 6 8

R assumes you know what you are doing if the length of the
longer vector is a multiple of the length of the shorter one. If not,
you will at least get a warning message:

a = c(1,2,3,4,5); y = c(1,2) # Note: semi-colon acts like a new line
a/y
#> Warning in a/y: longer object length is not a multiple of shorter object
#> length
#> [1] 1 1 3 2 5

ST 597 | Sp 2017 33/51

More Vector Recycling

Recycling is nice (and seems more appropriate) when the
shorter vector is a single element:

x = c(1,2,3,4,5,6)
x < 3
#> [1] TRUE TRUE FALSE FALSE FALSE FALSE

Notice how this returns a logical vector of the same length as x.
This type of behavior is handy-dandy.

Remember our subsetting:

Create a new data frame that contains only the flights
that were less than 1000 miles (distance)
library(nycflights13)
data(flights)
filter(flights, distance < 1000)
#> # A tibble: 189,671 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 554 600 -6 812
#> 2 2013 1 1 554 558 -4 740
#> 3 2013 1 1 557 600 -3 709
#> 4 2013 1 1 557 600 -3 838
#> 5 2013 1 1 558 600 -2 753
#> 6 2013 1 1 559 559 0 702
#> 7 2013 1 1 600 600 0 837
#> 8 2013 1 1 602 605 -3 821
#> 9 2013 1 1 606 610 -4 837
#> 10 2013 1 1 608 600 8 807
#> # ... with 189,661 more rows, and 12 more variables: sched_arr_time <int>,
#> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
#> # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

ST 597 | Sp 2017 34/51

Creating Vectors

ST 597 | Sp 2017 35/51

Creating Vectors: c()

We have already introduced c()

x = c(1,2,3,4,5)
x
#> [1] 1 2 3 4 5

c() can combine multiple vectors

c(0,x,6)
#> [1] 0 1 2 3 4 5 6

ST 597 | Sp 2017 36/51

Creating Vectors: colon

The colon (:) operator, a:b creates integers from a to b

1:10
#> [1] 1 2 3 4 5 6 7 8 9 10
-5:5
#> [1] -5 -4 -3 -2 -1 0 1 2 3 4 5
10:1 # blast-off; it recognizes direction!
#> [1] 10 9 8 7 6 5 4 3 2 1

ST 597 | Sp 2017 37/51

Creating Vectors: colon

Colons take precedence over arithmetic:

2+1:5
#> [1] 3 4 5 6 7
(2+1):5
#> [1] 3 4 5

ST 597 | Sp 2017 38/51

Creating Vectors: seq()

A more general version of : is the function seq().

seq(10, 20, by=2)
#> [1] 10 12 14 16 18 20
seq(5.5, 10.2, length=10)
#> [1] 5.500000 6.022222 6.544444 7.066667 7.588889 8.111111 8.633333
#> [8] 9.155556 9.677778 10.200000
seq(100, 0, by=-25) # notice that 'by' accepts negatives
#> [1] 100 75 50 25 0

This also works with Dates:

today = as.Date('2017-2-20')
seq.Date(today, today+60, by="months")
#> [1] "2017-02-20" "2017-03-20" "2017-04-20"
seq.Date(today, today+60, by="30 days")
#> [1] "2017-02-20" "2017-03-22" "2017-04-21"

ST 597 | Sp 2017 39/51

Creating Vectors: rep()

x = 1:5
rep(x, times=3)
#> [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
c(x,x,x)
#> [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
rep(x, each=3)
#> [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

ST 597 | Sp 2017 40/51

Creating Character Vectors: paste()

The paste() function combines vectors after converting to
characters.

paste("Stats", "is", "fun") # length of 1
#> [1] "Stats is fun"
c("Stats", "is", "fun") # length of 3
#> [1] "Stats" "is" "fun"

Create vectors of values X1, X2, . . . , X5:

paste("X", 1:5, sep="")
#> [1] "X1" "X2" "X3" "X4" "X5"

ST 597 | Sp 2017 41/51

Your Turn #2 : Creating Vectors

1. Find a way to create the vector with elements
1,0,3,3,3,7,6,5,4,3,2,1,2.7

2. Without running it, can you determine what y is:

x = 1:4
y = c(x, seq(10,4,by=-2), rep(x,each=2), TRUE, FALSE)

3.Without running it, can you determine what z is:

n = 5
z = 1:n-1

ST 597 | Sp 2017 42/51

Vector Indexing

ST 597 | Sp 2017 43/51

Vector Indexing

Extract or change value of certain elements of a vector.

http://cran.r-project.org/doc/manuals/
r-release/R-intro.html#Index-vectors

ST 597 | Sp 2017 44/51

http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Index-vectors
http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Index-vectors

Vector Indexing: by position

Elements of a vector can be extracted with square brackets, [].

x = 10:1
x[1]
#> [1] 10
x[1:3]
#> [1] 10 9 8
x[c(1,3,5,7,9)]
#> [1] 10 8 6 4 2
x[seq(1,10,by=2)]
#> [1] 10 8 6 4 2
x[c(1,1,1,2,2,2)] # this asks for the same value multiple times
#> [1] 10 10 10 9 9 9

ST 597 | Sp 2017 45/51

Vector Indexing: by exclusion

If you index with with negative numbers, it returns everything
except those indices.

x = 1:10
x[-1]
#> [1] 2 3 4 5 6 7 8 9 10
x[-(1:5)]
#> [1] 6 7 8 9 10

Use head(x,3) and tail(x,2) to get the first 3 and last
2 elements of x

ST 597 | Sp 2017 46/51

Vector Indexing: by logical vector

You can index with a logical vector. It will return every index that
is TRUE

x = 1:5
ind = c(TRUE,TRUE,FALSE,FALSE,TRUE)
x[ind]
#> [1] 1 2 5

What will be returned?

ind2 = c(TRUE,FALSE)
x[ind2]

ST 597 | Sp 2017 47/51

Vector Indexing: Assignment

Elements can be assigned different values with indexing:

x = 1:5
x[3] <- 99 # or x[3] = 99
x
#> [1] 1 2 99 4 5

Here’s something you probably don’t expect:

x[10] <- 10
x
#> [1] 1 2 99 4 5 NA NA NA NA 10

R will (without warning) extend the vector to the appropriate
length, filling in with NA.

ST 597 | Sp 2017 48/51

Your Turn #3 : Vector Indexing

set.seed(01312016) # set random seed
x = runif(100) # 100 uniform random numbers [0,1]

1. Find the index for the elements of x greater than the
median

2. Extract all elements of x greater than the median
3. Extract all elements of x that are in the lower and upper

5%. Hint: quantile().

The dplyr filter() only works on data frames. Here, I am looking for the
solutions without using data frames. But you could always create a data frame:
df = tibble(x) to use dplyr functions.

ST 597 | Sp 2017 49/51

Change vector elements by condition

The ifelse() function is very handy. It takes a logical vector
test, and for each element i returns yes[i] if
test[i]=TRUE and no[i] if test[i]=FALSE

if(test, yes, no)

Tax Rates. Suppose a simple graduated tax rate of 20% on
income less than $100K/year and 30% for the portion of incomes
that exceeds $100K

income = c(20, 210, 99, 387, 101) # income in thousands
tax = ifelse(income < 100, income*0.20, 100*0.20 + (income-100)*0.30)
tax/income # overall tax rate
#> [1] 0.2000000 0.2523810 0.2000000 0.2741602 0.2009901

Notice how vector recycling is used to make “rich” and “poor”
into vectors

class = ifelse(income < 100, "poor", "rich")
class
#> [1] "poor" "rich" "poor" "rich" "rich"ST 597 | Sp 2017 50/51

Modify columns in a data frame

The dplyr mutuate() function can be used to modify columns
from a data frame.

Suppose we were just told that our flights data had an error.
All flights that arrived more than 1 hour early have an air_time
value that is 20 minutes too large.

corrected = mutate(flights,
air_time = ifelse(arr_delay < -60,

air_time-20, # if TRUE
air_time)) # if FALSE

note: watch spacing; arr_delay<-60 vs. arr_delay < - 60

Double check we did it correctly:

filter(flights, arr_delay < -60)$air_time
filter(corrected, arr_delay < -60)$air_time

ST 597 | Sp 2017 51/51

	Assigning Variable
	Data Types
	Vectors
	Creating Vectors

