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Required Packages and Data
library(tidyverse)
library(gcookbook)
library(Lahman) # may need to: install.packages("Lahman")
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1 Cleveland Dot Plot

William Cleveland wrote a popular book on visualizing data The Elements of Graphing Data
that has many useful suggestions. One element he stressed was to reduce the cognitive strain on
the view. One way to do this is to use as little ink as possible. The Cleveland dot plot contains
the same information as a bar graph, but instead of using all the ink needed for the bar, remove
the bar altogether and place a dot at the bar height (using geom_point()).

Consider the baseball data Batting from the Lahman package. We want to display the number
of home runs for each team during the 2014 season.

library(Lahman) # load the Lahman package
data(Batting) # load the Batting data
H = Batting %>%

filter(yearID == 2014) %>%
group_by(teamID) %>%
summarize(teamHR = sum(HR), teamBA=sum(H)/sum(AB), teamR = sum(R))

glimpse(H)
#> Observations: 30
#> Variables: 4
#> $ teamID <fctr> ARI, ATL, BAL, BOS, CHA, CHN, CIN, CLE, COL, DET, HOU,...
#> $ teamHR <int> 118, 123, 211, 123, 155, 157, 131, 142, 186, 155, 163, ...
#> $ teamBA <dbl> 0.2484, 0.2407, 0.2563, 0.2441, 0.2526, 0.2387, 0.2376,...
#> $ teamR <int> 615, 573, 705, 634, 660, 614, 595, 669, 755, 757, 629, ...

I added team batting average (teamBA) and runs (teamR) to dress up our plot.

Compare the bar graph with the dot plot.

#- (left) bar graph
ggplot(H) + geom_col(aes(x=reorder(teamID, -teamHR), y=teamHR))

#- (right) corresponding dot plot
ggplot(H) + geom_point(aes(x=reorder(teamID, -teamHR), y=teamHR))
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1.1 Your Turn

Your Turn #1 : Dot Plot vs. Bar Plot

1. What are the differences between the two plots?
2. What aspects can be improved with the dot plot?

1.2 Cleveland Dot Plot Aesthetics

The real strength is in adding additional aesthetics, like size and color

ggplot(H) + geom_point(aes(x=reorder(teamID, -teamHR), y=teamHR,
size=teamR, color=teamBA>.260))
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Final touch include putting team on the y-axis, changing the theme, and adding a title

#- new theme
dot_theme = theme_bw() +

theme(panel.grid.major.x=element_blank(),
panel.grid.minor.x=element_blank(),
panel.grid.major.y=element_line(color="grey60",

linetype="dotted"))

#- Cleveland dot plot
ggplot(H) +

geom_point(aes(x=teamHR, y=reorder(teamID, teamHR),
size=teamR, color=teamBA>.260)) +

dot_theme +
labs(title = "2014 MLB", x="home runs", y="team") +
scale_color_manual(name="BA>.260", values=c("blue", "orange")) +
scale_size(name="Runs", range=c(1,6))
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The Cleveland Dot Plot is an alternative to a bar plot. There is also a dot plot (geom_dotplot())
that is an alternative to a histogram.

2 Line Graphs

2.1 economics data

The economics data from the ggplot2 package contains some economic time series data

library(dplyr)
library(ggplot2)
data(economics)
glimpse(economics)
#> Observations: 574
#> Variables: 6
#> $ date <date> 1967-07-01, 1967-08-01, 1967-09-01, 1967-10-01, 1967...
#> $ pce <dbl> 507.4, 510.5, 516.3, 512.9, 518.1, 525.8, 531.5, 534....
#> $ pop <int> 198712, 198911, 199113, 199311, 199498, 199657, 19980...
#> $ psavert <dbl> 12.5, 12.5, 11.7, 12.5, 12.5, 12.1, 11.7, 12.2, 11.6,...
#> $ uempmed <dbl> 4.5, 4.7, 4.6, 4.9, 4.7, 4.8, 5.1, 4.5, 4.1, 4.6, 4.4...
#> $ unemploy <int> 2944, 2945, 2958, 3143, 3066, 3018, 2878, 3001, 2877,...

We can plot the number of unemployed over time with a line plot (using geom_line())
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ggplot(economics, aes(date, unemploy)) + geom_line()
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ggplot recognizes the date class and smartly adds yearly tick marks.

We can fancy it up, maybe add some points

ggplot(economics, aes(date, unemploy)) +
geom_line(size=2, color="orange") +
geom_point(shape=21, color='blue', fill='white', size= 1)
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We can shade the region under the line with geom_area()
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ggplot(economics, aes(date, unemploy)) +
geom_area(color='black', fill='#B1810B', alpha=.7, size=1)
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Multiple lines (using another aesthetic mapping for second line)

ggplot(economics, aes(date, unemploy)) +
geom_line(size=2, color="orange") +
geom_line(aes(date, uempmed*1000 ))
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How did the economy do for the presidents? Let’s use the presidential data from ggplot2
and use geom_rect() to shade in the time period for each president

ggplot(economics) +
geom_line(aes(date, unemploy),size=1.5, color="black") +
geom_rect(data=filter(presidential, start>as.Date("1969-01-01")),

aes(xmin=start, xmax=end, ymin=-Inf, ymax=Inf, fill=reorder(name, start)),
alpha=.3) +
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scale_fill_brewer(palette="Set1", name="President")
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2.2 Your Turn: Stock Price

Your Turn #2 : Stock Price

This exercise will walk you through a simple way to plot stock data.
1. Check out the yahoo webpage of historical stock price data for Netflix (NFLX).
2. Notice the url from the Download Data link. There is a pattern in requesting

dates (a,d are month-1). Here is the link I used from 1/1/16-2/4/17:

url = "http://chart.finance.yahoo.com/table.csv?
s=NFLX&a=00&b=01&c=2016&d=01&e=04&f=2017&g=d&ignore=.csv"

3. Read the data into R as a tibble:

NFLX = read_csv(url)

4. Examine the data, then create a line plot of the Close price by Date. Color the
line darkgreen.

5. Use geom_area() to fill the area below the line with lightgreen.

3 Estimating Distributions

We need to estimate distributions to understand how likely (or unlikely) a certain outcome is.
For many problems, an optimal decision can be formulated if we know the distribution of the
random variable. Often, only certain properties of the distribution (expected value, variance,
quantiles) are needed to make decisions. Much of statistics is involved with estimation of the
distributions or their properties.

Let X be a random variable of interest. The cumulative distribution function (cdf) is F (x) =
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Pr(X ≤ x). For discrete random variables, the probability mass function (pmf) is f(x) =
Pr(X = x). For continuous random variables, the probability density function (pdf) is
f(x) = d

dxF (x).

A parametric distribution is one that is fully characterized by a set of parameters. Examples
include Normal/Gaussian (mean-µ,standard deviation-σ), Poisson (rate-λ), Binomial (size-n,
probability-p). There are also multivariate versions: Gaussian N(µ,Σ). If we can model
(assume) the random variable follows a specific parametric distribution, then we only need to
estimate the parameter(s) to have the entire distribution characterized. The parameters are often
of direct interest themselves (mean, standard deviation).

3.1 Discrete Data

Discrete data can be numeric or categorical. Categorical (or Qualitative) Data can take values
in a (finite) fixed set that indicate a group or category, while Discrete Numeric data may take a
countably infinite number of values.

• Numeric (ordered)
– crimes per year: {0,1,. . . }
– number of home runs in next 10 at bats: {0,1,. . . ,10}

• Ordinal (ordered)
– rate your boss: {horrible, bad, fair, good, great}

• Nominal (no order)
– get to work: {car, walk, bus, fly}

Relative frequency (proportion of times the value occurs in a sample) is the most basic way to
estimate a discrete probability mass function. Bar graphs are the basic graphical device.

3.2 Continuous Data

Continuous data can take an uncountably infinite number of values (if it was possible to measure
with enough resolution). Continuous data are usually measurements and take values on intervals
of the real numbers. For example,

• time
• weight
• speed
• temperature

Because we can never actually measure or store something to infinite precision, we will always
technically be working with discrete data. The distinction is more related to what methods are
used to analyze the data. For example, we can treat discrete random variables, like counts, as
continuous for regression modelling or histograms. Or we can bin continuous data for use in
frequency tables or cluster/segmentation analysis (e.g., 1(heightIn > 60) ).

In R, continuous data is represented with numeric vectors. Sometimes discrete data (like counts)
can be treated as continuous data for graphical purposes and sometimes treated like categorical
data.
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3.2.1 Density Estimation

There are two flavors of density estimation: parametric and non-parametric.

Parametric Density Estimation involves two steps:

1. Choose a parametric distribution
2. Estimate the parameter(s)

Of course, these are not trivial tasks. There is a huge number of parametric families and many
ways to estimate parameters (e.g., MLE, MOM, Bayesian approaches).

Non-parametric Density Estimation attempts to estimate the density with minimal assumptions
on the distribution. Non-parametric density estimation is a great exploratory tool. You are familiar
with one approach already: histograms.

4 Histograms

4.1 geom_hist()

A histogram still requires some parameters (or settings); namely the the binning. Here we use a
10lb bin width.

library(gcookbook)
data(heightweight)
summary(heightweight)
#> sex ageYear ageMonth heightIn weightLb
#> f:111 Min. :11.6 Min. :139 Min. :50.5 Min. : 50.5
#> m:125 1st Qu.:12.3 1st Qu.:148 1st Qu.:58.7 1st Qu.: 85.0
#> Median :13.6 Median :163 Median :61.5 Median :100.5
#> Mean :13.7 Mean :164 Mean :61.3 Mean :101.0
#> 3rd Qu.:14.8 3rd Qu.:178 3rd Qu.:64.3 3rd Qu.:112.0
#> Max. :17.5 Max. :210 Max. :72.0 Max. :171.5

g = ggplot(heightweight, aes(x=weightLb))
g + geom_histogram(binwidth=10, fill="grey60", color="red")
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But these histograms are not actually a valid density estimation. They are actually bar graphs
without space between the bars. Recall that that a proper density will have the properties:
f̂(x) ≥ 0 and

∫
f̂(x) dx = 1.

So, to be a proper density the area of the bars must sum to one. In ggplot2, this can be
accomplished by specifying the y-axis aesthetic to be ..density...

hist.density = geom_histogram(aes(y=..density..), binwidth=10,
fill="grey60", color="red")

g + hist.density
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Relative frequency bar heights can be obtained with aes(y=..count../sum(..count..)).
The default value is aes(y=..count..)
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The authors recommend density scaled frequency polygons
geom_freqpoly(aes(y=..density..))

5 Kernel Density Estimation

Density histograms are only one non-parametric density estimation technique. A better one is
kernel density estimation (KDE). This estimates the density by summing a set of kernels which
are centered on each observation

f̂(x) = 1
n

n∑
i=1

K(x− xi)

The kernels themselves are usually taken to be proper density function (e.g., Gaussian) that
are centered at zero. The level of overall smoothing in controlled by the bandwidth (which
is proportional to the standard deviation for a Gaussian kernel). Consider the data xtmp =
c(-2.2,-1.3,-0.1,0.1,0.2,0.3,1)
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The histogram can give a very different solution if the origin for the bin is adjusted. Is it really
good to assume a 0 density for values greater than 1? The kernel density, alternatively, eliminates
the binning origin issue.

5.1 geom_density()

Add this to the duration data, we can see how the kernel density compares to the histogram

g + hist.density + geom_density() + geom_rug()
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While it is possible to change the kernel (gaussian, biweight, etc.) the biggest difference will
occur by adjusting the bandwidth. This is done with the adjust= argument.

base = g + hist.density + geom_rug()

base + geom_density(color="black", size=1.1) +
geom_density(adjust=2, color="red", size=1.1) +
geom_density(adjust=1/2, color="blue", size=1.1)
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Compare the density of weight between the boys and girls

g + geom_density(aes(fill=sex), alpha=.4) +
scale_fill_manual(values = c(f="red", m="royalblue1")) # modify default colors
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More information and examples of density curves, including using multiple curves for grouped
data, can be found in RGraphics Chapter 6.

5.1.1 2D Density

There are also functions for 2D density, for example geom_density2d():

#- (left) basic
ggplot(heightweight, aes(x = heightIn, y = ageYear)) + geom_point() +
geom_density2d()

#- (right) separate by sex
ggplot(heightweight, aes(x = heightIn, y = ageYear, color=sex)) + geom_point() +
geom_density2d()
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The 2D histogram to show 2D covariation is called by geom_bin2d

ggplot(heightweight, aes(x = heightIn, y = ageYear)) +
geom_bin2d(binwidth=c(1,1)) + # explicitly set binwidths
geom_point(color="white") # add overlay of points
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It can be useful to fill the color of the 2d bins with other measures besides the count. Here will
set the fill color to the proportion of males:

ggplot(heightweight, aes(x = heightIn, y = ageYear, z=sex)) +
stat_summary_2d(fun=function(z) mean(z=="m"), binwidth=c(2,1)) +
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geom_point(aes(color=sex)) +
scale_fill_gradient(low="white", high="green", name="prop male")

12

14

16

18

50 55 60 65 70

heightIn

ag
eY

ea
r

0.00

0.25

0.50

0.75

1.00
prop male

sex

f

m

Notice the use of z= aesthetic in ggplot() and the fun= argument in stat_summary_2d().

5.2 Some Useful Settings: geom_histogram, geom_density

• geom_histogram has options: (see ?stat_bin for details)
– binwidth: width of the bins
– origin: the start point for the first bin (default is min(data))
– breaks: the specific breakpoints. Overrides binwidth and origin if provided
– right: FALSE (default) right open, left closed

• geom_density has options: (see ?stat_density for details)
– adjust: the bandwidth used is actually adjust*bw. This makes it easy to specify

values like half the default bandwidth.
– kernel: a character string giving the smoothing kernel to be used. See ?density

for options. Default is 'gaussian'.
– trim: if TRUE, the default, densities are trimmed to the actual range of the data.
– na.rm: If FALSE (the default), removes missing values with a warning. If TRUE

silently removes missing values.
• They both can accept aesthetics: (see ?geom_histogram and ?geom_density)

– color: line color
– fill: fill color
– alpha: transparency [0,1]
– linetype: "blank", "solid", "dashed", "dotted", "dotdash", "longdash", and "twodash"
– size: size of lines
– weight: maybe weighted observations?
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6 Boxplot and Violin Plot

6.1 Boxplot

The old boxplot’s strength is comparing multiple distributions without a parametric assumption.

g2 = ggplot(heightweight, aes(x=sex, y=weightLb))
g2 + geom_boxplot()
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Remember the box indicates the 1st and 3rd quartile (with horizontal line the median). The
whiskers extend 1.5(Q3-Q1) units (or min/max) from box and outliers are represented by points.

The boxplot is usually better than kde/histogram when comparing the distribution of several
groups. For example, the distribution of diamond price by color

ggplot(diamonds, aes(color, price)) + geom_boxplot()
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This reveals, at a glance, the five number summary for each color group.

6.2 Violin Plot

A problem with the boxplot is that it does not reveal the shape of the distribution (e.g., modes).
A violin plot is a better alternative. It replaces the box with a kernel density estimate.

g2 + geom_boxplot()

g2 + geom_violin()

ggplot(heightweight, aes(x=weightLb)) + geom_density() +
facet_wrap(~sex) + coord_flip()
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6.3 Discretizing continuous variables for boxplot

If we want to see the conditional distribution of price (y-axis) according to carat (x-axis)
we can bin the x variable (using cut_width()) and make boxplots:

ggplot(diamonds, aes(carat, price)) +
geom_point(alpha=.1, shape=20) +
geom_boxplot(aes(group=cut_width(carat, .5)), fill=NA, color="blue", outlier.alpha=0)
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Notice I used cut_width(x, width) to make the groups. This divides x, a vector of
numeric data, into bins of width equal to width. Here are some similar functions. All take a
numeric vector x:

• cut_width(x, width) bins of width width
• cut_number(x, n) finds n bins of approximately equal number of observations
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• cut_interval(x, n) find n bins of equal width
• cut(x, breaks, ...) for general purpose. Set the breaks argument for ultimate

flexibility.

6.4 Sequentile Quantiles (Fanchart, Fanplot)

Instead of a series of separate boxplots, we can connect the quantiles with lines.

For this, we will need to some baseball data and some transformations

library(Lahman)

#-- Get the quantiles for team HR's by year
qHR =

Batting %>%
group_by(yearID, teamID) %>%
summarize(HR=sum(HR, na.rm=TRUE)) %>% # team HR's each year
summarize( # quantiles for each year

q95=quantile(HR, .95, na.rm=TRUE),
q75=quantile(HR, .75, na.rm=TRUE),
q50=quantile(HR, .50, na.rm=TRUE),
q25=quantile(HR, .25, na.rm=TRUE),
q05=quantile(HR, .05, na.rm=TRUE),
avg=mean(HR, na.rm=TRUE)) # always nice to get mean too

#-- Plot with geom_ribbon
ggplot(qHR, aes(x=yearID)) +

geom_ribbon(aes(ymax=q95, ymin=q75), fill="#d7191c") +
geom_ribbon(aes(ymax=q75, ymin=q50), fill="#fdae61") +
geom_ribbon(aes(ymax=q50, ymin=q25), fill="#abd9e9") +
geom_ribbon(aes(ymax=q25, ymin=q05), fill="#2c7bb6") +
geom_line(aes(y=avg), color="black")
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6.5 Your Turn: Old Faithful

{https://upload.wikimedia.org/wikipedia/commons/1/1b/Old_Faithfull-pdPhoto.jpg }

Your Turn #3 : Old Faithful

The geyser data from the MASS package gives duration and waiting times for The Old Faith-
ful Geyser in Yellowstone National Park, Wyoming. Load the geyser data. (Remember
install.packages() if you don’t have MASS loaded)

1. Estimate the density of duration with a histogram.
• What did you choose for binwidth and/or origin and/or bins?

2. Add a KDE of duration to the histogram
• What did you choose for adjust (i.e., kernel bandwidth)?

3. Estimate the bivariate density of duration and waiting. Do you see how duration
can have two groups?

4. Overlay two KDE density curves by creating a discrete variable for fill= by splitting
the waiting time into two equally sized bins with cut_number(waiting, n=2).
(Make the plot below (ignore colors):)
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