
04 - Data Transformation

ST 597 | Spring 2017
University of Alabama

04-transform.pdf

ST 597 | Sp 2017 1/45

Data Transformation

dyplr Package

Select rows with filter()

Arranging (ordering) rows with arrange()

Select columns with select()

Add or modify variables with mutate()

Other dplyr functions

ST 597 | Sp 2017 2/45

Required Packages and Data

library(tidyverse)
library(nycflights13)

Remember, if you are getting the error:
> Error in library(nycflights13) : there is no
package called ‘nycflights13’

then you have not installed the nycflights13 on your
computer. You can do so by:

I typing install.packages("nycflights13") in console
or

I Tools -> Install Packages... from RStudio.

ST 597 | Sp 2017 3/45

Practice

You need to practice to become proficient with the tools we are
covering. The best way to do this is start analyzing data that is
interesting to you. Here are some places:

I Many R packages have interesting data: lahman,
gapminder, acs

I https://www.springboard.com/blog/
free-public-data-sets-data-science-project/

I https://www.dataquest.io/blog/
free-datasets-for-projects/

Look on-line and find something interests you. I can help you get
the data into R if necessary, just ask.

ST 597 | Sp 2017 4/45

https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.dataquest.io/blog/free-datasets-for-projects/
https://www.dataquest.io/blog/free-datasets-for-projects/

Data Transformation

ST 597 | Sp 2017 5/45

Working with data

When working with data you must:

1. Figure out what you want to do.
2. Precisely describe what you want to do in such a way that the

compute can understand it (i.e. program it).
3. Execute the program.

The dplyr package makes some of these steps fast and easy:

I By constraining your options, it simplifies how you can think
about common data manipulation tasks.

I It provides simple “verbs”, functions that correspond to the
most common data manipulation tasks, to help you translate
those thoughts into code.

I It uses efficient data storage backends, so you spend less
time waiting for the computer.

In this section you’ll learn the key verbs of dplyr in the context
of a new dataset on flights departing New York City in 2013.

ST 597 | Sp 2017 6/45

nycflights13

To explore the basic data manipulation verbs of dplyr, we’ll use
the flights data frame from the nycflights13 package.
This data frame contains all 336,776 flights that departed from
New York City in 2013. The data comes from the US Bureau of
Transportation Statistics, and is documented in
?nycflights13.

ST 597 | Sp 2017 7/45

http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0

nycflights13

#- Load the flights data from nycflights13 package
library(nycflights13)
flights
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

A tibble is a special data frame. See Chapter 10 of RDS for more details on
the differences between tibble and data.frame.

ST 597 | Sp 2017 8/45

http://r4ds.had.co.nz/tibbles.html

dyplr Package

ST 597 | Sp 2017 9/45

dyplr help

I Data Transformation Cheatsheet
I Introduction Vignette from package
http://cran.r-project.org/web/packages/
dplyr/vignettes/introduction.html

ST 597 | Sp 2017 10/45

https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf
http://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html
http://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

dplyr single table verbs

1. filter(): find/keep certain rows
I alternative to base::subset()
I slice() to keep by row number
I between(): numeric values in a range

2. arrange(): reorder rows
I alternative to base::order()
I desc() to use descending order

3. select(): find/keep certain columns
I helper functions: starts_with(), ends_with(),
matches(), contains(), ?select

4. mutate(): add/create new variables
I alternative to base::transform()
I transmute(): only return new variables

ST 597 | Sp 2017 11/45

dplyr single table verbs

All verbs work similarly:

1. The first argument is a data frame.
2. The subsequent arguments describe what to do with the data

frame. You can refer to columns in the data frame directly
without using $.

3. The result is a new data frame.

Together these properties make it easy to chain together multiple
simple steps to achieve a complex result.

Again, the Data Transformation Cheatsheet is a handy reference.

ST 597 | Sp 2017 12/45

https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf

Select rows with filter()

ST 597 | Sp 2017 13/45

Select rows by position with slice()

To select rows by position, use slice():

slice(flights, 5:8) # selects the 5th - 8th row
#> # A tibble: 4 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 554 600 -6 812
#> 2 2013 1 1 554 558 -4 740
#> 3 2013 1 1 555 600 -5 913
#> 4 2013 1 1 557 600 -3 709
#> # ... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
#> # time_hour <dttm>

ST 597 | Sp 2017 14/45

Select rows by values with filter()

filter() allows you to subset observations according to
specific criteria.

I The first argument is the name of the data frame.
I The second and subsequent arguments are the expressions

that filter the data frame (think and).
I For example, we can select all flights on January 1st with:

filter(flights, month == 1, day == 1)

This is equivalent to the base subset() function:

subset(flights, month == 1 & day == 1)

filter() works similarly to subset() except that you can give it any number
of filtering conditions, which are joined together with &.

ST 597 | Sp 2017 15/45

Relational Operators for Numeric Vectors

R provides the standard suite of numeric comparison operators:
>, >=, <, <=, != (not equal), and == (equal).

When you’re starting out with R, the easiest mistake to make is
to use = instead of == when testing for equality. When this
happens you’ll get a somewhat uninformative error:

filter(flights, month = 1)
#> Error: filter() takes unnamed arguments. Do you need `==`?

Whenever you see this message, check for = instead of ==.

ST 597 | Sp 2017 16/45

Relational Operators for Character Vectors (and Factors)

I == equal to
I != not equal to
I %in% element of set (use: x %in% set)

x = c("aa", "bb", "aa", "bb", "aa", "cc", "dd")
x == "aa"
#> [1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE
x != "aa"
#> [1] FALSE TRUE FALSE TRUE FALSE TRUE TRUE
x %in% c("aa","bb")
#> [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE
!(x %in% c("aa","bb")) # x not in set
#> [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE

ST 597 | Sp 2017 17/45

Logical Operators

Multiple arguments to filter() are combined with “and”.

#- select flights with dest of BHM *and* December
filter(flights, dest=="BHM", month == 12)

To get more complicated expressions, you can use Boolean
operators. The | is read as “or”

#- select flights with Nov *or* Dec
filter(flights, month == 11 | month == 12)

#- dest of BHM *and* (Nov *or* Dec)
filter(flights, dest=="BHM", month == 11 | month == 12)

ST 597 | Sp 2017 18/45

Logical Dangers

Beware of a common mistake:

filter(flights, month == 11 | 12)

Note the order isn’t like English. This expression doesn’t find on
months that equal 11 or 12. Instead it finds all months that equal
11 | 12, which is TRUE:

11 | 12
#> [1] TRUE

In a numeric context (like here), TRUE becomes one, so this
finds all flights in January, not November or December.

ST 597 | Sp 2017 19/45

Values in a set

Instead you can use the helpful %in% shortcut:

filter(flights, month %in% c(11, 12))

Or between()

filter(flights, between(month, 11, 12))

The function between(x, left, right) is a shortcut for x >= left &
x<= right (inclusive).

ST 597 | Sp 2017 20/45

More Logical and Relational Operators

I I have compiled a list of some common logical and relational
operators

I Complete set of Boolean operations from the R for Data
Science book:

ST 597 | Sp 2017 21/45

http://mdporter.github.io/ST597/lectures/logic-sets-control.html
http://mdporter.github.io/ST597/lectures/logic-sets-control.html
http://r4ds.had.co.nz/transform.html
http://r4ds.had.co.nz/transform.html

Your Turn #1 : filter()

Find all the flights that:

1. Departed in July
2. That flew to Houston (IAH or HOU)
3. Departed in July and flew to Houston
4. Flew to Hou or Originated from ’JFK‘
5. That were delayed by more than two hours
6. That arrived more than two hours late, but didn’t leave

late
7. Had an arrival time earlier than departure time

Understand how each variable is coded (e.g. the integer 1 = January, the integer
517 = 5:17am, etc.).

ST 597 | Sp 2017 22/45

Solutions

ST 597 | Sp 2017 23/45

Arranging (ordering) rows with arrange()

ST 597 | Sp 2017 24/45

Arrange rows with arrange()

I arrange() works similarly to filter() except that instead
of filtering or selecting rows, it reorders them.

I It takes a data frame, and a set of column names (or more
complicated expressions) to order by.

I If you provide more than one column name, each additional
column will be used to break ties in the values of preceding
columns.

I Order by year, then month, then day:

arrange(flights, year, month, day)
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

ST 597 | Sp 2017 25/45

Descending Order

I By default, arrange() orders from smallest to largest
I Use desc() to order a column in descending order:

arrange(flights, desc(dep_time))
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 10 30 2400 2359 1 327
#> 2 2013 11 27 2400 2359 1 515
#> 3 2013 12 5 2400 2359 1 427
#> 4 2013 12 9 2400 2359 1 432
#> 5 2013 12 9 2400 2250 70 59
#> 6 2013 12 13 2400 2359 1 432
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

I This works on categorical data too (alphabetical order)
I This works on factors too (ordered by levels)

ST 597 | Sp 2017 26/45

Base R function order()

The dplyr::arrange() function is a replacement for
order()

You can accomplish the same thing in base R by the more
verbose:

flights[order(flights$year, flights$month, flights$day),
drop = FALSE]

ST 597 | Sp 2017 27/45

Your Turn #2 : arrange()

1. Sort flights to find the most delayed flights
2. Sort flights to find the least delayed flights
3. Sort flights by destination and break ties by arrival delay
4. Sort flights to find highest average flight speed

(distance/air_time)

ST 597 | Sp 2017 28/45

Solutions

ST 597 | Sp 2017 29/45

Select columns with select()

ST 597 | Sp 2017 30/45

Select columns with select()

I It’s not uncommon to get datasets with hundreds or even
thousands of variables.

I In this case, the first challenge is often narrowing in on the
variables you’re actually interested in.

I select() allows you to rapidly zoom in on a useful subset
using operations based on the names or positions of the
variables.

I Select columns by name

select(flights, year, month, day) # keep year, month, and day columns

I Select columns by position

select(flights, 1:3) # keep first 3 columns

ST 597 | Sp 2017 31/45

Other ways to select columns

I Deselect or drop columns using the - symbol

select(flights, -year, -month, -day) # keep all except year, month, day

select(flights, -(1:3)) # keep all except first 3 columns

I Select range of columns by name

Select all columns between year and day (inclusive)
select(flights, year:day)
Select all columns except those from year to day (inclusive)
select(flights, -(year:day))

ST 597 | Sp 2017 32/45

Yet more ways to select columns

There are a number of helper functions you can use within
select():

I starts_with("abc"): matches names that begin with
“abc”.

I ends_with("xyz"): matches names that end with “xyz”.
I contains("ijk"): matches name that contain “ijk”.
I matches("(.)\\1"): selects variables that match a

regular expression.
This one matches any variables that contain repeated
characters. You’ll learn more about regular expressions later
in the course

I num_range("x", 1:3) matches x1, x2 and x3.
I one_of(x) selects any names in the vector x

See ?select and Data Transformation Cheatsheet for more
details.

ST 597 | Sp 2017 33/45

https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-transformation-cheatsheet.pdf

Related functionality

Use rename() function to rename a column

rename(flights, tail_number = tailnum)
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 517 515 2 830
#> 2 2013 1 1 533 529 4 850
#> 3 2013 1 1 542 540 2 923
#> 4 2013 1 1 544 545 -1 1004
#> 5 2013 1 1 554 600 -6 812
#> 6 2013 1 1 554 558 -4 740
#> # ... with 3.368e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tail_number <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

I Note: this returns a full data frame. It does not modify the
original.

I To apply the renaming, use flights =
rename(flights, tail_number = tailnum)

ST 597 | Sp 2017 34/45

Re-arrange Columns

I The column order can be rearranged with select(). This is
especially helpful for viewing on the screen/console

select(flights, distance, air_time, origin, dest, carrier)
#> # A tibble: 336,776 × 5
#> distance air_time origin dest carrier
#> <dbl> <dbl> <chr> <chr> <chr>
#> 1 1400 227 EWR IAH UA
#> 2 1416 227 LGA IAH UA
#> 3 1089 160 JFK MIA AA
#> 4 1576 183 JFK BQN B6
#> 5 762 116 LGA ATL DL
#> 6 719 150 EWR ORD UA
#> # ... with 3.368e+05 more rows

ST 597 | Sp 2017 35/45

Add or modify variables with mutate()

ST 597 | Sp 2017 36/45

Add or modify variables with mutate()

I The job of mutate() is to add new (or modify) columns that
are functions of existing columns.

I mutate() always adds the new columns at the end of the
data frame in order created

flights_sml <- select(flights, # reduce variables
year:day,
ends_with("delay"),
distance,
air_time

)

mutate(flights_sml,
gain = arr_delay - dep_delay, # add gain variable
speed = distance / air_time * 60 # add speed variable

)
#> # A tibble: 336,776 × 9
#> year month day dep_delay arr_delay distance air_time gain speed
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227 9 370.0441
#> 2 2013 1 1 4 20 1416 227 16 374.2731
#> 3 2013 1 1 2 33 1089 160 31 408.3750
#> 4 2013 1 1 -1 -18 1576 183 -17 516.7213
#> 5 2013 1 1 -6 -25 762 116 -19 394.1379
#> 6 2013 1 1 -4 12 719 150 16 287.6000
#> # ... with 3.368e+05 more rows

ST 597 | Sp 2017 37/45

mutate() function

I Note that you can refer to columns that you’ve just created:

mutate(flights_sml,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours # used the newly created variables

)
#> # A tibble: 336,776 × 10
#> year month day dep_delay arr_delay distance air_time gain hours
#> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2013 1 1 2 11 1400 227 9 3.783333
#> 2 2013 1 1 4 20 1416 227 16 3.783333
#> 3 2013 1 1 2 33 1089 160 31 2.666667
#> 4 2013 1 1 -1 -18 1576 183 -17 3.050000
#> 5 2013 1 1 -6 -25 762 116 -19 1.933333
#> 6 2013 1 1 -4 12 719 150 16 2.500000
#> # ... with 3.368e+05 more rows, and 1 more variables: gain_per_hour <dbl>

mutate() is also used to modify the columns (e.g. recode() or change
data type). E.g., mutate(flights, flight = as.character(flight)
will change flight column to a character.

ST 597 | Sp 2017 38/45

transmute() to only keep new columns

If you only want to keep the newly created columns, use
transmute() instead of mutate() + select()

transmute(flights,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours

)
#> # A tibble: 336,776 × 3
#> gain hours gain_per_hour
#> <dbl> <dbl> <dbl>
#> 1 9 3.783333 2.378855
#> 2 16 3.783333 4.229075
#> 3 31 2.666667 11.625000
#> 4 -17 3.050000 -5.573770
#> 5 -19 1.933333 -9.827586
#> 6 16 2.500000 6.400000
#> # ... with 3.368e+05 more rows

ST 597 | Sp 2017 39/45

Using aggregate functions in mutate()

I For statistical analysis, we often want to compare individual
values to aggregates

I E.g., create the Z score for the distance column

transmute(flights,
Zdist = (distance - mean(distance))/sd(distance))

#> # A tibble: 336,776 × 1
#> Zdist
#> <dbl>
#> 1 0.49109544
#> 2 0.51291660
#> 3 0.06694652
#> 4 0.73112827
#> 5 -0.37902357
#> 6 -0.43766796
#> # ... with 3.368e+05 more rows

For each element in the distance column, it subtracts the column mean and
divides by the column standard deviation.

ST 597 | Sp 2017 40/45

Your Turn #3 : mutate()

1. Create a new data frame that contains only the flights
that were less than 1000 miles (distance). Keep only
the columns: dep_delay, arr_delay, origin, dest,
air_time, and distance.

2. Add the Z -score for departure delays to the new data
frame

3. Convert the departure and arrival delays into hours
4. Return only the average flight speed (in mph)
5. Calculate the mean speed

ST 597 | Sp 2017 41/45

Solutions

ST 597 | Sp 2017 42/45

Other dplyr functions

ST 597 | Sp 2017 43/45

Honorable Mentions: Data frame functions

I distinct(): retain unique/distinct rows
I sample_n() and sample_frac(): randomly sample rows
I top_n(): selects and orders the top n rows according to wt
I add_column() add new column in particular position
I add_row() adds new row(s) to the table

ST 597 | Sp 2017 44/45

Honorable Mentions: Dealing with NA’s (missing values)

Dealing with missing values (NA) is important, but tedious.
These can help

I na_if(x, y) converts the y valued elements in x to NA

x = c(1, 2, -99, 5, 5, -99)
na_if(x, -99) # replace -99 with NA
#> [1] 1 2 NA 5 5 NA

I coalesce(x, y) replaces the NA in x with y

x = c(1, 2, NA, 5, 5, NA)
coalesce(x, 0) # replace NA with 0
#> [1] 1 2 0 5 5 0

These two functions can be used in mutate() to modify columns.

ST 597 | Sp 2017 45/45

	Data Transformation
	dyplr Package
	Select rows with filter()
	Arranging (ordering) rows with arrange()
	Select columns with select()
	Add or modify variables with mutate()
	Other dplyr functions

