
03 - Intro to graphics (with ggplot2)
ST 597 | Spring 2017

University of Alabama

03-dataviz.pdf

Contents

1 Intro to R Graphics 2
1.1 Graphics Packages . 2
1.2 Base Graphics . 2
1.3 plot() . 2
1.4 ggplot2 package . 2

2 Scatterplots 3
2.1 heightweight data . 3
2.2 Data Frames (and Tibbles) . 3
2.3 Basic Scatterplot . 4
2.4 Aesthetics . 5
2.5 Your Turn: Scatterplots . 9
2.6 Additional Geoms . 9
2.7 Layers . 10
2.8 Your Turn: Geoms and Layers . 13
2.9 Plot Objects . 13
2.10 Scatterplot Aesthetics . 14

3 Bar Graphs: geom_bar() 15
3.1 diamonds data . 15
3.2 Bar graphs . 15
3.3 geom_bar() . 15
3.4 Two Variables . 16
3.5 Stats: stat_count() and stat_identity() 18
3.6 Reordering x-axis reorder() . 21
3.7 Your Turn: Bar Graphs . 22

4 Additional Material 22
4.1 ggplot 2 details . 22
4.2 Themes . 23
4.3 Scales . 23

Required Packages and Data
library(tidyverse)
library(gcookbook)

1

1 Intro to R Graphics

1.1 Graphics Packages

R has several approaches to making graphics:

1. Base Graphics - the golden oldies. Includes functions like plot(), lines(),
points(), barplot(), boxplot(), hist() etc.

• Graphics are layered manually. First create high level plots (e.g, with plot), then
add on top with e.g., lines() or text()

2. ggplot2 - Grammar of Graphics created by Hadley Wickham.

3. lattice - a popular approach, but we will not cover in this course.

1.2 Base Graphics

Calling a high-level plotting function creates a new plot.

• barplot(), boxplot(), curve(), hist(), plot(), dotchart(), image(),
matplot(), mosaicplot(), stripchart(), contour()

Low-level functions write on top of the existing plot.

• Add to the plotting region: abline(), lines(), segments(), points(),
polygon(), grid()

• Add text: legend(), text(), mtext()
• Modify/add axes: axis(), box(), rug(), title()

1.3 plot()

The plot(x) function can produce plots depending on the class of object x

• if x is data.frame, then a pairs() plot
• if x is a factor vector, then a barplot()
• if x is a linear model (lm()), then a series of regression diagnostic plots
• Or, we have been creating scatterplots with plot(x,y)

Advanced: type methods(plot) to see all the types of objects that plot() knows about.
Some packages add their own plotting methods that can be called with plot(). To see
help documentation, type in the full method (e.g., ?plot.data.frame). To see the
code that is used (for the methods with asterisks) use the getAnywhere() function, e.g.
getAnywhere(plot.data.frame).

1.4 ggplot2 package

The ggplot2 package is created by Hadley Wickham and is the 2nd version of a grammar of
graphics approach to visualizing data. It takes a somewhat different approach than the base R
graphics, which we will illustrate with some examples. There are now several nice resources
available:

1. Data Visualization Cheat Sheet
2. ggplot2 website
3. R Graphics Cookbook, by Winston Chang

2

https://www.rstudio.com/resources/cheatsheets/
http://docs.ggplot2.org/current/

• Associated website
4. ggplot2 Theory

2 Scatterplots

2.1 heightweight data

Check out the heightweight data from the gcookbook package (?heightweight). It
is a sample of 236 schoolchildren.

library(gcookbook) # to access the heightweight data
data(heightweight)
str(heightweight)
#> 'data.frame': 236 obs. of 5 variables:
#> $ sex : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 1 1 1 ...
#> $ ageYear : num 11.9 12.9 12.8 13.4 15.9 ...
#> $ ageMonth: int 143 155 153 161 191 171 185 142 160 140 ...
#> $ heightIn: num 56.3 62.3 63.3 59 62.5 62.5 59 56.5 62 53.8 ...
#> $ weightLb: num 85 105 108 92 112 ...

2.2 Data Frames (and Tibbles)

A data.frame (and tibble) is similar to a spreadsheet or data table: data represented in
rows and columns.

• Technically, we can think of a data frame as a collection of vectors that all have the
same length.

– n rows/observations, p columns/variables/features
• But they don’t have to be of the same type. E.g., some columns are character vectors, some

numeric vectors, some factors, etc.

Think of each row of the data frame as an observation and each column as a variable.

2.2.1 Getting info about a data frame

• Some useful functions

ncol(heightweight) # ncol() gives number of columns
#> [1] 5
nrow(heightweight) # nrow() gives number of rows
#> [1] 236
dim(heightweight) # dim() gives dimensions (nrows, ncols)
#> [1] 236 5

• The full data frame can be viewed with the function View() (capital V)

View(heightweight)

• The function str() will give information about a data frame (or any other R object)

str(heightweight)
#> 'data.frame': 236 obs. of 5 variables:
#> $ sex : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 1 1 1 ...
#> $ ageYear : num 11.9 12.9 12.8 13.4 15.9 ...
#> $ ageMonth: int 143 155 153 161 191 171 185 142 160 140 ...

3

http://www.cookbook-r.com/Graphs/
http://vita.had.co.nz/papers/layered-grammar.pdf

#> $ heightIn: num 56.3 62.3 63.3 59 62.5 62.5 59 56.5 62 53.8 ...
#> $ weightLb: num 85 105 108 92 112 ...

2.2.2 Data Types

Each column (feature) of a data frame is a vector of the same type of data. R recognizes many
data types, but here are the primary ones we will need to know for data visualization:

• numeric or (num) is used for continuous variables
• integer or (int) is used for integer variables

– if an integer column has a few unique values, treat like categorical. Else treat like
continuous variable.

• character or (chr) is used for categorical variables
– ordered alphabetically

• factor or (Factor) is used for categorical variables
– these are special in that factors also contains the levels, or possible values the variable

can have.
– ordered by levels

• logical or (logi) for TRUE/FALSE variables
• date or (Date) for date variables

The data types determine how each variable can be used in a plot. For example, numeric
variables cannot be used for faceting and categorical variables should not be used for the
size asthetic. ggplot2 makes the distinction between discrete and continuous variables on the
Data Visualization Cheat Sheet.

2.3 Basic Scatterplot

A scatterplot show the relationship between two numeric (continuous) variables. Here is the
basic setup with ggplot2 for examining the relationship between height (heightIn) and age
(ageYear)

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear))

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

Is is clear that tall children are generally older than shorter children (trend).

4

https://www.rstudio.com/resources/cheatsheets/

Your Turn #1

What other patterns or features can you find?

Notice the two components used to build the plot:

1. ggplot() initiates a new plot object.
• ?ggplot
• It can take arguments data= and mapping=.
• In the example, we used ggplot(data=heightweight) making the
heightweight data available to the other plot layers

2. geom_point() adds a layer of points to the plot
• ?geom_point
• It can take several arguments, but the primary one is mapping. The mapping tells

ggplot where to put the points.
• The x= and y= arguments of aes() explain which variables to map to the x

and y axes of the graph. ggplot will look for those variables in your data set,
heightweight.

• The call geom_point(mapping = aes(x = heightIn, y = ageYear))
specifies that heightIn is mapped to x-axis and ageYear is mapped to y-axis.

You complete your graph by adding one or more layers to ggplot(). Here, the function
geom_point() adds a layer of points to the plot, which creates a scatterplot. ggplot2 comes
with other geom functions that you can use as well. Each function creates a different type of
layer, and each function takes a mapping argument.

The ggplot components can be on different lines, but must have the + separator before the end of
line.

#- What is wrong here?
ggplot(data=heightweight)

+ geom_point(mapping = aes(x = heightIn, y = ageYear))

2.4 Aesthetics

The real strength of ggplot2 is in its mapping of data to a visual component. An aesthetic
(specified by aes()) is a visual property of the points in your plot. Aesthetics include things
like the size, the shape, or the color of your points.

It would make sense to examine our data according to sex to see if there are differences between
the boys and girls. We will use the color= aesthetic to color the points according the value of
the sex variable

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, color=sex))

5

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

This maps the males (m) point to a blueish color and females (f) to reddish color. (We will
illustrate how to change these color mappings later). It also creates a legend that shows the
mapping.

We could alternatively try mapping the sex value to a shape (with shape= in aes()):

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, shape=sex))

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

This, by default, maps the males (m) point a triangle and females (f) to a circle.

We could even map both the color and shape to sex:

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, color=sex, shape=sex))

6

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

and the legend shows the color and shape.

2.4.1 Fixed aesthetics

The previous examples mapped a third variable, sex, to the color and shape. But we can also fix
these values (not associated with a variable) by setting them outside of aes().

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear), color="green", shape=15)

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

Notice the legend disappears since these are fixed values.

Summary:
- inside of the aes() function, ggplot2 will map the aesthetic to data values and build a legend.
- outside of the aes() function, ggplot2 will directly set the aesthetic to your input.

2.4.2 Continuous aesthetics

Notice that we mapped continuous variables to the x and y axis, and a discrete (categorical) vari-
able to the color and shape. We can also map continuous variables to the aesthetics. For example,

7

we can make a bubbleplot by mapping the size of point to the child’s weight (weightLb).

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, size=weightLb))

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

weightLb

75

100

125

150

The legend shows how the size corresponds to the weight.

Color can also be set by a continuous variable

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, color=weightLb))

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

75

100

125

150

weightLb

Similar to color, alpha controls the transparency of the color

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear, alpha=weightLb),

color="blue")

8

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

weightLb

75

100

125

150

2.4.3 Other aesthetics for geom_point

Each geom can understand a set of aesthetics. We can find out what geom_point() accepts
by checking the help

• ?geom_point
• http://docs.ggplot2.org/current/geom_point.html
• Data Viz cheatsheet

2.5 Your Turn: Scatterplots

Your Turn #2 : Scatterplots

Now that you know how to use aesthetics, take a moment to experiment with the mpg data
set (from ggplot2 package).

1. Map a discrete variable to color, size, alpha, and shape. Then map a continuous vari-
able to each. Does ggplot2 behave differently for discrete vs. continuous variables?

• The discrete variables in mpg are: manufacturer, model, trans, drv, fl, class
• The continuous variables in mpg are: displ, year, cyl, cty, hwy

2. Map the same variable to multiple aesthetics in the same plot. Does it work? How
many legends does ggplot2 create?

3. Attempt to set an aesthetic to something calculated, like displ < 5. What hap-
pens?

2.6 Additional Geoms

A geom is the geometrical object that a plot uses to represent data. People often describe plots by
the type of geom that the plot uses. For example, bar charts use bar geoms, line charts use line
geoms, boxplots use boxplot geoms, and so on. Scatterplots use the point geom.

You can use different geoms to plot the same data. The plot on the left uses the point geom, and
the plot on the right uses the smooth geom, a smooth line fitted to the data.

9

http://docs.ggplot2.org/current/geom_point.html

#- scatterplot: geom_point()
ggplot(data=heightweight) +

geom_point(mapping = aes(x = heightIn, y = ageYear))

#- smoothed curve: geom_smooth()
ggplot(data=heightweight) +

geom_smooth(mapping = aes(x = heightIn, y = ageYear))
#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

Both plots represent the same data, but in different ways. The smooth curve is an estimate of the
mean age for a given value of height (with point-wise 95% confidence interval), while the points
are the raw values.

The geom_smooth() can take a different set of aesthetics than geom_point().

2.7 Layers

We can also layer geoms to add additional information

ggplot(data=heightweight) +
geom_smooth(mapping = aes(x = heightIn, y = ageYear)) +

geom_point(mapping = aes(x = heightIn, y = ageYear))
#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

Note that the order of adding layers matters. If we added the points first (and set a large alpha
value), then some of the points would be obscured.

10

ggplot(data=heightweight) +
geom_point(mapping = aes(x = heightIn, y = ageYear)) +

geom_smooth(mapping = aes(x = heightIn, y = ageYear), alpha=.8)
#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

2.7.1 Global vs. local aesthetics

Notice that in the last example, we specified the x and y mappings twice. This is not necessary.
Global aesthetics can be assigned in the ggplot() function and will apply to all layers (unless
specified in the geoms). For example, the previous example could be produced by:

ggplot(data=heightweight, mapping = aes(x = heightIn, y = ageYear)) +
geom_smooth() +

geom_point()
#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r

Because the data and x,y mappings are given in ggplot(), they apply to both subsequent
layers. These global settings can be modified or enhanced at the geom level

ggplot(data=heightweight, mapping = aes(x = heightIn, y = ageYear)) +
geom_smooth(color="purple") + # change line to purple

11

geom_point(mapping=aes(color=sex)) # map sex to point color
#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

Also, each geom can use its own data

ggplot(data=heightweight, mapping = aes(x = heightIn, y = ageYear)) +
geom_smooth(data=filter(heightweight, heightIn> 60)) + # use filtered data
geom_point(mapping=aes(color=sex)) # map sex to point color

#> `geom_smooth()` using method = 'loess'

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

2.7.2 Arguments by position

Remember that ggplot() and geom_*() are functions, so we can set their arguments by
name or position. Because data= is the first argument of ggplot() and mapping= is the
second, we do not need specify the names, but can use position. Likewise, mapping= is the
first argument of the geoms. So we can save typing by using position

ggplot(heightweight, aes(x = heightIn, y = ageYear)) +
geom_smooth(data=filter(heightweight, heightIn> 60)) + # use filtered data
geom_point(aes(color=sex)) # map sex to point color

#> `geom_smooth()` using method = 'loess'

12

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

Notice, we still need to name data=filter(heightweight, heightIn> 60) in the
call the geom_smooth() because the first argument is expected to be mapping, not data.

2.8 Your Turn: Geoms and Layers

Your Turn #3 : Geoms and Layers

1. What does method='lm' do for geom_smooth()? Try it.
2. What will this produce (describe in words)

ggplot(heightweight, aes(x = heightIn, y = weightLb,
shape=sex, color=sex)) +

geom_smooth(aes(fill=sex)) +
geom_point()

3. Why will this not work
ggplot(mapping=aes(heightIn)) +
geom_point(data=heightweight, aes(y=weightLb)) +
geom_smooth()

2.9 Plot Objects

Every ggplot function returns a plot object that can be saved in the environment and reused as
necessary. For example

g = ggplot(heightweight, aes(x = heightIn, y = ageYear))

Now go to the environment tab and see the structure of g. It is a list with all the specifications
for plotting, along with the data. But so far no layers.

We can add a layer, but not plot it yet

g2 = g + geom_point(aes(color=sex))

To make the plot, we have to explicitly print it.

g2 + geom_smooth() #-or explicitly- print(g2 + geom_smooth())
#> `geom_smooth()` using method = 'loess'

13

12

14

16

50 55 60 65 70

heightIn

ag
eY

ea
r sex

f

m

This makes is easy to save plots, or components, for reuse and reduce possibility of introducing
errors.

Plots can be saved with the ggsave() function. For example

ggsave("figs/myplot.pdf", plot=g2)

Your Turn #4 : Plot Objects

1. Where would this plot be saved on your machine?
2. Describe the plot that will be saved?

2.10 Scatterplot Aesthetics

Scatterplots can take several aesthetics: x, y, alpha, color, fill, shape, size, and
stroke. These options can be found
- ?geom_point
- Data Viz Cheatsheet

Some detail of the aesthetics can be found in the ggplot2 vignettes: http://docs.ggplot2.org/
current/vignettes/ggplot2-specs.html.

Mapping variable values to colors from cookbook-r

• The alpha= aesthetic controls the transparency
• alpha takes values in [0, 1].

– 1 (default value) for no transparency
– 0 is fully transparent

Your Turn #5 : Aesthetic Mapping

1. What is the difference between setting an aesthetic and mapping an aesthetic to a
variable?
2. Explain how variables are mapped to aesthetics.

14

https://www.rstudio.com/resources/cheatsheets/
http://docs.ggplot2.org/current/vignettes/ggplot2-specs.html
http://docs.ggplot2.org/current/vignettes/ggplot2-specs.html
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#mapping-variable-values-to-colors

3 Bar Graphs: geom_bar()

3.1 diamonds data

The ggplot2 package provides the diamonds data, which contains the prices and other attributes
of over 50K round cut diamonds. (Type ?diamonds for details.)

data(diamonds) # load the diamonds data from ggplot2 package
diamonds # print the diamonds data frame
#> # A tibble: 53,940 × 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
#> 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
#> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
#> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
#> 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
#> 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
#> 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
#> 10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39
#> # ... with 53,930 more rows

3.2 Bar graphs

Bar graphs are used to display numeric values (on the y-axis) for different discrete values (on the
x-axis). A (usually filled) bar extends from 0 to the numeric value. This is a common type of
plot to visualize frequency tables (counts of cases in the data).

3.3 geom_bar()

The basic analysis of categorical/discrete data is a count of how many times each value occurs.
This is achieved with the basic frequency table and corresponding bar graph. By default,
geom_bar() will count the occurrences and produce a bar graph.

g2 = ggplot(data=diamonds) # set-up the basic plot object
g2 + geom_bar(aes(x=clarity)) # bar plot of clarity variable
g2 + geom_bar(aes(x=cut)) # bar plot of cut variable

0

5000

10000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

co
un

t

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal

cut

co
un

t

Notice that only the x axis must be specified as ggplot2 will calculate the counts automatically.

15

3.4 Two Variables

What is more interesting is to examine the joint occurrence of two discrete variables (e.g.,
clarity and cut). We will examine four ways to do this: stacked bar graph, side-by-side bar
graph, count plot, and faceting.

3.4.1 Stacked bar graph

Here we will use clarity as the x-axis and map fill= to the cut variable to make a stacked
bar graph

g2 + geom_bar(aes(x=clarity, fill=cut))

0

5000

10000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

Why did we specify fill= instead of color=?

3.4.2 Side-by-Side bar graph

Another option is a side-by-side bar graph. This is achieved by setting position="dodge"

g2 + geom_bar(aes(x=clarity, fill=cut), position="dodge")

0

1000

2000

3000

4000

5000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

16

Notice in the help (?geom_bar), the default position="stack".

3.4.3 Bivariate Counts

The count plot produces a two-dimensional distribution.

g2 + geom_count(aes(x=cut, y=clarity))
g2 + geom_count(aes(x=cut, y=clarity)) + scale_size_area()

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

Fair Good Very Good Premium Ideal

cut

cl
ar

ity

n

1000

2000

3000

4000

5000

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

Fair Good Very Good Premium Ideal

cut
cl

ar
ity

n

1000

2000

3000

4000

5000

The area of the point is proportional to the counts, but zero counts can still get an area. Use the
scale_size_area() function to ensure that a count of 0 is mapped to a size of 0 (i.e., no
dot).

3.4.4 Facets

Another way to show the barplot for two (or three) variables is with faceting.

g2 + geom_bar(aes(x=clarity)) +
facet_wrap(~cut)

Premium Ideal

Fair Good Very Good

I1 SI2 SI1 VS2VS1VVS2VVS1IF I1 SI2 SI1 VS2VS1VVS2VVS1IF

I1 SI2 SI1 VS2VS1VVS2VVS1IF

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

clarity

co
un

t

The facet_wrap() function will display the plot over a wrapped grid. While
facet_grid() will display in a grid and is most suitable for two variable faceting

g2 + geom_bar(aes(x=clarity)) +
facet_grid(color~cut)

17

Fair Good Very Good Premium Ideal

D
E

F
G

H
I

J

I1SI2SI1VS2VS1VVS2VVS1IF I1SI2SI1VS2VS1VVS2VVS1IF I1SI2SI1VS2VS1VVS2VVS1IF I1SI2SI1VS2VS1VVS2VVS1IF I1SI2SI1VS2VS1VVS2VVS1IF

0
300
600
900

0
300
600
900

0
300
600
900

0
300
600
900

0
300
600
900

0
300
600
900

0
300
600
900

clarity

co
un

t

Note that faceting will work with other geoms. This faceted scatterplot shows five variables.

ggplot(diamonds) + geom_point(aes(x=carat, y=price, color=clarity)) +
facet_grid(color~cut)

Fair Good Very Good Premium Ideal

D
E

F
G

H
I

J

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

carat

pr
ic

e

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

3.5 Stats: stat_count() and stat_identity()

Notice in the basic bar graph:

g2 + geom_bar(aes(x=clarity))

18

0

5000

10000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

co
un

t

we only set the x-axis aesthetic and ggplot knew to calculate the frequency and assign the y
value the counts (with label). It did this by creating new data with a with a stat, or statistical
transformation, and then applying the geom. Specifically, geom_bar(), by default, uses
stat_count which computes a data set of counts for each x value from your raw data.
geom_bar() then uses this computed data to make the plot.

We could mimic this by first creating the counts data, but then we would need to use
stat=identity so no further transformations are used.

d.table = count(diamonds, clarity) # count() returns the frequencies
d.table
#> # A tibble: 8 × 2
#> clarity n
#> <ord> <int>
#> 1 I1 741
#> 2 SI2 9194
#> 3 SI1 13065
#> 4 VS2 12258
#> 5 VS1 8171
#> 6 VVS2 5066
#> 7 VVS1 3655
#> 8 IF 1790
ggplot(data=d.table) + geom_bar(aes(x=clarity, y=n), stat='identity')

19

0

5000

10000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

n

More details on the stats are given in: http://r4ds.had.co.nz/data-visualisation.html#
statistical-transformations.

The new geom_col() function is shortcut for geom_bar(..., stat='identity')

ggplot(d.table) + geom_col(aes(x=clarity, y=n))

0

5000

10000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

n

3.5.1 Relative frequencies

I often work with relative frequencies rather than the raw counts. It is not difficult to pre-calculate
our relative frequencies

d2 = mutate(d.table, rel.freq=n/sum(n))
d2
#> # A tibble: 8 × 3
#> clarity n rel.freq
#> <ord> <int> <dbl>
#> 1 I1 741 0.01374
#> 2 SI2 9194 0.17045
#> 3 SI1 13065 0.24221
#> 4 VS2 12258 0.22725
#> 5 VS1 8171 0.15148

20

http://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
http://r4ds.had.co.nz/data-visualisation.html#statistical-transformations

#> 6 VVS2 5066 0.09392
#> 7 VVS1 3655 0.06776
#> 8 IF 1790 0.03319
ggplot(data=d2) +

geom_bar(aes(x=clarity, y=rel.freq), stat='identity') +
geom_text(aes(x=clarity, y=rel.freq, label=n), vjust=1.5, color="white", size=4)

741

9194

13065

12258

8171

5066

3655

1790

0.00

0.05

0.10

0.15

0.20

0.25

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

re
l.f

re
q

Notice how the geom_text() is used with the label= aesthetic.

The mutate() functions adds a calculated column to a data frame. We will learn about this
function later.

Alternatively, we can use the output (i.e., computed variables) from the stat_count, which is
. . . count. . . and . . . prop. . .

#-- Alternative Relative Frequency Bar Plots
g2 + geom_bar(aes(x=clarity, y=..prop.., group=1))

g2 + geom_bar(aes(x=clarity, y = (..count..)/sum(..count..)))

0.00

0.05

0.10

0.15

0.20

0.25

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

pr
op

0.00

0.05

0.10

0.15

0.20

0.25

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF

clarity

(.
.c

ou
nt

..)
/s

um
(.

.c
ou

nt
..)

3.6 Reordering x-axis reorder()

How is the x-axis ordered? If the variable mapped to the x-axis is:

• numeric (or integer), then it orders from smallest to largest
• factor, then it orders according to the levels

21

• character, then it orders alphabetically (basically converts to factor)

But we are creating graphics to reveal something about the data. And the ordering of the bars
can bring understanding. There are two primary orderings: inherent ordering of the levels or
height of the bars.

In the diamonds data, the factors (cut, color, and clarity) are already ordered from worst
to best quality. But we may want to reorder from the most frequent level. This can be achieved
with the reorder() function.

#- increasing order
ggplot(data=d.table) + geom_bar(aes(x=reorder(clarity, n), y=n), stat='identity')

#- decreasing order
ggplot(data=d.table) + geom_bar(aes(x=reorder(clarity, -n), y=n), stat='identity')

0

5000

10000

I1 IF VVS1 VVS2 VS1 SI2 VS2 SI1

reorder(clarity, n)

n

0

5000

10000

SI1 VS2 SI2 VS1 VVS2 VVS1 IF I1

reorder(clarity, −n)

n

3.7 Your Turn: Bar Graphs

Your Turn #6 : Bar Graphs

Using the mpg data from ggplot2 package:
1. Make a bar graph of cyl and facet by drv
2. Make a side-by-side bar graph of cyl with a fill= according to year

4 Additional Material

4.1 ggplot 2 details

• data is what we want to visualize. Consists of variables, which are the columns of a data
frame (data must be a data frame)

• geoms are geometric objects that are drawn to represent data (bars, lines, points, etc.)
• aesthetics are the visual properties of geoms, such as x and y position, line color, point

shapes, etc.
• mappings from data values to aesthetics (map a factor value to a color)
• scales control the mapping from the values in data space to values in aesthetic space. E.g.,

a continuous y scale maps larger numeric values to vertically higher positions in space.
• guides show the viewer how to map visual properties back to data space (e.g., tick marks,

axis labels, etc.)

22

4.2 Themes

Alabama Theme, using the official UA colors. See RGraphics Cookbook Chapter 9 for more
details.

theme_UA = theme(
panel.background = element_rect(fill='#eeeeee'),
panel.grid.major = element_line(color="#990000"),
panel.grid.minor = element_line(color="#990000", size=0.2),
panel.border = element_rect(color="#990000", fill=NA, size=2))

ggplot(economics, aes(date, unemploy)) +
geom_line(size=2, color="orange") +
theme_UA

4000

8000

12000

1970 1980 1990 2000 2010

date

un
em

pl
oy

4.3 Scales

The scale controls the mapping from the values in data space to values in aesthetic space. We
have already used a few scale adjustments. scale_size_area() sets the size of a point pro-
portional to the area, not radius. scale_fill_brewer() and scale_color_brewer()
change the fill and color mappings according to colorbrewer palettes. You can also change the
coordinate scale (scale_x_log10), etc. Type scale_ and hit Tab from RStudio to scroll
through all options and http://docs.ggplot2.org/current/ and the R Graphics Cookbook for specific
examples and options.

23

http://strategiccommunications.ua.edu/standards/web
http://colorbrewer2.org/
http://docs.ggplot2.org/current/

	Intro to R Graphics
	Graphics Packages
	Base Graphics
	plot()
	ggplot2 package

	Scatterplots
	heightweight data
	Data Frames (and Tibbles)
	Basic Scatterplot
	Aesthetics
	Your Turn: Scatterplots
	Additional Geoms
	Layers
	Your Turn: Geoms and Layers
	Plot Objects
	Scatterplot Aesthetics

	Bar Graphs: geom_bar()
	diamonds data
	Bar graphs
	geom_bar()
	Two Variables
	Stats: stat_count() and stat_identity()
	Reordering x-axis reorder()
	Your Turn: Bar Graphs

	Additional Material
	ggplot 2 details
	Themes
	Scales

