APPENDIX A
MATHEMATICAL ADDENDUM

1 INTRODUCTION

The purpose of this appendix is to provide the reader with a ready reference to some
mathematical results that are used in the book. This appendix is divided into two
main sections: The first, Sec. 2 below, gives results that are, for the most part, com-
binatorial in nature, and the last gives results from calculus. No attempt is made to
prove these results, although sometimes a method of proof is indicated.

2 NONCALCULUS

2.1 Summation and Product Notation

A sum of terms such as ni 4 n, + ns + ne + n, is often designated by the symbol
7

> ni.  is the capital Greek letter sigma, and in this connection it is often called the
i=3

summation sign. The letter / is called the summation index. The term following > is
called the summand. The “i= 3" below > indicates that the first term of the sum is
obtained by putting / = 3 in the summand. The *“7” above the D indicates that the
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final term of the sum is obtained by putting /i = 7 in the summand. The other terms
of the sum are obtained by giving 7 the integral values between the limits 3 and 7. Thus

5

> (—1)7%jx? = 2x* — 3x° 4 4x® — 5x'°.

=2

An analogous notation for a product is obtained by substituting the capital
Greek letter [T for >. In this case the terms resulting from substituting the integers
for the index are multiplied instead of added. Thus

Yo De- Y-

EXAMPLE 1 Some useful formulas involving summations are listed below.
They can be proved using mathematical induction.

2":1 i n(n + 1);271 +1) . @
él i3 = ["("; 1)]2. 3)

i . n(n + 1)(2n+ ;3}(3112 +3n—1) . @

i=1

Equation (1) can be used to derive the following formula for an arithmetic series
Or progression:

n d
le[a—l—(j—»l)d]:na—{—inn—-—l). 5

A companion series, the finite geometric series, or progression, is given by

not 1 —r"
Jzoarf:alur. (6)
I

2.2 Factorial and Combinatorial Symbols and Conventions

A product of a positive integer n by all the positive integers smaller than it is usually
denoted by n! (read ““ n factorial’’). Thus

n!=n(n*~1)(n-2)°'“‘1='ﬁ(”"j)' ™

i=0

0! is defined to be 1.
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A product of a positive integer n by the next kX — 1 smaller positive integers is
usually denoted by (n)x. Thus

N=nn—1)++-(n—k+1)

o~
(#.°]
-

k
=1l (n—j+1).
J= 1
Note that there are k& terms in the product in Eq. (8).

Remark (n)«= n!/(n— k)!, and (n), = n!/0! = nl. The combinatorial symbol

(Z) is defined as follows:

n) RO n! 9
Q"m*m-mmr ©)

(k) is read ‘““combination of » things taking k£ at a time” or more briefly as

*“n pick k*°; it is also called a binomial coefficient. Define

G):o if k<0 or k>n (10)
I

(6)=()="
(Z) N (nfk)'

n—+1 n n ¢ 1o . 1
k k) T \k—1 orn=1,2... an =0, +1, +2,....

(11)

Equation (11) is a useful recurrent formula that is easily proved. I

- ) n . .,
Both (n); and the combinatorial symbol ( k) can be generalized from a positive integer
n to any real number t by defining

fork=1,2,..., (12)

;
and (k) =1fork=0.
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Remark

—n (—m)(—n—1)+ - (—n—k+1)
( - k!

nn+ 1)t k-1
k!

+ k—1
= (1) (" . ) i

= (-1

2.3 Stirling’s Formula

In finding numerical values of probabilities, one is often confronted with the evaluation
of long factorial expressions which can be troublesome to compute by direct multiplica-
tion. Muchlabor may be saved by using Stirling’s formula, which gives an approximate
value of n!. Stirling’s formula is

n!~ (2m)te "n"t* (13)
or
n!l= (zﬂ)ie—nnn+fer(n)/12n’ (14)

where 1 — 1/(12n + 1) <r(n) < 1. To indicate the accuracy of Stirling’s formula, 10!
was evaluated using five-place logarithms and Eq. (13), and 3,599,000 was obtained.
The actual value of 10! is 3,628,800. The percent error is less than 1 percent, and the
percent error will decrease as » increases.

2.4 The Binomial and Multinomial Theorems

The binomial theorem is often given as

@tby=>3 (’J’) @b~ (15)

J=0

L] . . » . n 3
for n, a positive integer. The binomial theorem explains why the ( ) are sometimes
J

called binomial coefficients. Four special cases are noted in the following remark.

(")ﬂ (16)
i)

Q== (;'.)(—ml, )

J=0

r= 3 (") (18)

Remark A+Hr=

W
4=
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and

0= > (—1)1(;?). (19)

i=o
111
Expanding both sides of
A+ xA+x)"=0+x)+*
and then equating coefficients of x to the nth power gives
S )=("""), e

S \jj\n—j] "\ n

a formula that is particularly useful in considerations of the hypergeometric distribution.
A generalization of the binomial theorem is the multinomial theorem, which is

k n ! &
1__[ m! )

i=1

where the summation is over all nonnegative integers »n;, n;, ..., n, which sum to n.
A special case is

(3.0) =(a)(30) =5 poa a2

Also note that

(é a,) (Jé b,) =35 ,2 ab;. 23)

3 CALCULUS

3.1 Preliminaries

It is assumed that the reader is familiar with the concepts of limits, continuity, differenti-
ation, integration, and infinite series. A particular limit that is referred to several
times in the book is the limit expression for the number ¢; that is,

lim (1 4+ x)V*=e. (24)

x-0

Equation (24) can be derived by taking logarithms and utilizing I’Hospital’s rule,
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which is reviewed below. There are a number of variations of Eq. (24), for instance,

lim(1+x"1)*=e (25)

and
lim (1 4+ Ax)**=¢*  for constant A. (26)
x-0
A rule that is often useful in finding limits is the following so-called I’Hospital’s
rule: If f(+) and g( - ) are functions for which lim f(x) = lim g(x) = 0 and if

xX—a X—=a
lim f__’(x)
x=a g'(X)
exists, then so does
limf(—x)
x=a (X)’
and
y S . f(x)
im—- = lim——

sag(x)  xsagl(x)’

EXAMPLE 2 Find lim [(1/x) log. (1 + x)]. Let f(x) =log. (1 + x) and g(x) = x;

x=0
then
. fx) .1 .
1 — l = 1 1 ]_ — .
0g () soltx e [x log. (1 + x)] g

Another rule that we use in the book is Leibniz’ rule for differentiating an integral:
Let

h(t)

I(t) = f(x; 1) dx,

9(1)

where f(* ; ), g( +), and h(-) are assumed differentiable. Then

dl h(t) of . dh i ig
il BT COIDE R VOIDL - @)

Several important special cases derive from Leibniz’ rule; for example, if the
integrand f(x; t) does not depend on ¢, then

d k(1) dh dg
~ [ | s dx] — S = — f(ge) ;5 (28)
in particular, if g(¢) is constant and A(z) = ¢, Eq. (28) simplifies to

d t
= [-‘l () dx] = f(2). (29
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3.2 Taylor Series

The Taylor series for f(x) about x = q is defined as

[r@e—a e -

) =f(@+fVa)x—a)+ o o + R, (30)
where
VA4S 1 ST x —a)
@)= dri | R.= D! and a<c<x.

R, is called the remainder. f(x) is assumed to have derivatives of at least order » + 1.
If the remainder is not too large, Eq. (30) gives a polynomial {of degree ») approxima-
tion, when R, is dropped, of the function f(-). The infinite series corresponding to
Eq. (30) will converge in some interval if lim R, = 0 in this interval. Several important

n-» a0

infinite Taylor series, along with their intervals of convergence, are given in the follow-
ing examples.

EXAMPLE 3 Suppose f(x) =e¢*and a=0. Then

2 43
e"=1+x+2—!'+3—!'+"'
o xj
— Z—_ for —oo < x << o0, (31)
JzO]!

[

EXAMPLE 4 Suppose f(x)=(1—x)' and a=0; then f®(x)= —¢t(1—x)""14,
FEE) = 1= DA = 22, o, fOR) = (=Dt — Dreoe (= o+ DA~ 2,

and hence
@ xJ
) =1=x'= 2 (=), =
1=0 J!
x {t
:;Zo (j)(—-x)’ for -1 <x<1. (32)
I
There are several interesting special cases of Eq. (32). ¢= —n gives
& (- ® (m+j—1
(1—x)""= Z( ,n)(*x)f= > ( ] )x’ for -1 <x<1; (33)
J=o\ J J= J
t = —1 gives the geometric series

A—x-1= 3 »; (34)
=0
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t = —2 gives

a-»=2= 3 G+Dx. @9

EXAMPLE 5 Suppose f(x) = log. (1 + x) and a = 0; then

x2 x3 x*

loge(1+x)=x—?+?——z+"' for —1<x<1. (36)
I

The Taylor series for functions of one variable given in Eq. (30) can be generalized
to the Taylor series for functions of several variables. For example, the Taylor series
for f(x, y) about x = a and y = b can be written as

fx,»)=f(a,b)+f(a b)x—a)+ fla,b)y—b)+

1
51 Ued@ B)(x — @)* + 2f,,,(a, B)(x — a)(y — b) + /,,(a, D)y — B)*] + -+,

where
of
f x(a: b) - 5_ ’
X | = =a,y =b
o0%f
fxy(a’ b) - ay ax xmayab 9
and similarly for the others.
3.3 The Gamma and Beta Functions
The gamma function, denoted by I'( + ), is defined by
I'@t) = f x'"le=*dx  fort>0. (37

1]

I'(z) is nothing more than a notation for the definite integral that appears on the right-
hand side of Eq. (37). Integration by parts yields

I'(t + 1) = tI'(¢), (38)
and, hence, if # = n (an integer),
T(n+1)=n!. (39)
If n is an integer,

1.3.5-.-..(2n_1)

I'n+ %)= >

V', (40)
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and, in particular,
I@)=2r@ =V @1)
The beta function, denoted by B( -, -), is defined by

1

B(a,b)=f X1 —xP-tdx fora>0,b>0. 42)

o

Again, B(a, b) is just a notation for the definite integral that appears on the right-hand
side of Eq. (42). A simple variable substitution gives B(a, b) = B(b, a). The beta
function is related to the gamma function according to the following formula:

T'(@)I'(b)
T'(a+b)’

B(a, b) = (43)



