Homework \#2

ST 554

Blitzstein \& Hwang: Chapter 2

$3,4,6,8,10,11,28 \mathrm{a}, 34,37,54,55$

Extra problems: Chapter 2 (optional)

- solved: $1,2,22,23,25,26,30,32,35,38,39$
- interest: $13,26,36,59,63$

Computer Experiment: Conditional Independence (optional)

Consider tossing a fair die. Let $A=\{2,4,6\}$ and $B=\{1,2,3,4\}$. Then $\operatorname{Pr}(A)=1 / 2, \operatorname{Pr}(B)=2 / 3)$, and $\operatorname{Pr}(A, B)=1 / 3$. Since $\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$, the events A and B are independent.
a. Simulate draws from the sample space and denote $\widehat{P}(A), \widehat{P}(B)$, and $\widehat{P}(A B)$ as the proportion of time each event occurred in the simulation. Check if $\widehat{P}(A, B)=\widehat{P}(A) \widehat{P}(B)$. Compare the simulated values to the theoretical values.
b. Compute $\widehat{P}(A \mid B)=\frac{\widehat{P}(A B)}{\widehat{P}(B)}$. Compare the simulated values to the theoretical values.
c. Now repeat for another event C that is not independent of A and compute $\widehat{P}(C), \widehat{P}(A, C)$, and $\widehat{P}(A \mid C)$. Compare the simulated values to the theoretical values.

