Prediction Trees
CART, Bagging, and Random Forest
DS 6410 | Spring 2025

trees.pdf

Contents

1 Classification and Regression Tree Intro
1.1 PredictionTrees . . . . . . . . . .
1.2 Recursive Binary Partition (CART) . . . . . . . . . .. . ... . ... . . . . . ... .. ..
1.3 GrowingaTree . . . . . . . . . L e
1.4 Splitting Details . . . . . . . . . . . . e e
1.5 Stoppingand Pruning . . . . . . . .. L
1.6 Special Considerations . . . . . . . . . . . v i e e e e e
1.7 Prediction Tree Advantages . . . . . . . . . . . o . i e e
1.8 Tree Limitations . . . . . . . . . . . oL e
1.9 Prediction Treesin R . . . . . . . . . . . . e
Trees Demo
2.1 Required RPackages . . . . . . . . . . . . ..
2.2 Baseball SalaryData . . . . . . . . . . . . ...
23 RegressionTree . . . . . . . oL
2.4 Details of Splitting (for Regression Trees) . . . . . . . . . . .. ... ... ... .
Bagging Trees
3.1 BetterTrees . . . . . . . . o e e e e e e e e e e e
3.2 Bagging Trees . . . . . . . . .. e e e
Random Forest
4.1 Random Forest . . . . . . . . . . . . e
4.2 Random Forest Tuning . . . . . . . . . . . . . . . e
43 OO0BEerITor . . . . . o o e e e e e e
4.4 Variable Importance . . . . . . .. L e
4.5 Random Forestand k-NN . . . . . . . . .. . L
4.6 Random ForestsinR . . . . . . . . . . . .. ... e

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with
applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and
R. Tibshirani.

19
19
19
19
26

31
31
34



Prediction Trees
CART, Bagging, and Random Forest DS 6410 | Spring 2025

2/42

1 Classification and Regression Tree Intro

Tree-based methods:

1. Partition the feature space into a set of (hyper) rectangles.
2. Fit a simple model (e.g., constant) in each region.

They are conceptually simple yet powerful.

* Main Characteristics:
- flexibility, intuitive, non-model based
— natural graphical display, easy to interpret
— building blocks of Random Forest and (Tree-based) Boosting
— naturally includes feature interactions
— reduces need for monotonic feature transformations
* Main Implementations:

— CART (Classification and Regression Trees) by Breiman, Friedman, Olshen, Stone (1984)

— C4.5 Quinlan (1993)
— Conditional Inference Trees (party R package)

1.1 Prediction Trees

saft <1016
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Figure 1: Regression Tree Prediction of House Pricing in Sacramento, CA
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1.1.1 Prediction Tree Loss functions
As usual, we want find the trees that make predictions which minimizes some loss function.

* Classification trees have class probabilities at the leaves (e.g., the probability of heavy rain is 0.9).
— E.g., Loss = Negative Binomial likelihood.

* Regression trees have a mean response at the leaves. (e.g., the expected amount of rain is 2in).
- E.g., Loss = Mean squared error.

1.2 Recursive Binary Partition (CART)

Because the number of possible trees is too large to exhaustively search, we usually restrict attention to
recursive binary partition trees (CART).

* These are also easy to interpret

Ry -, X,

Think of the reverse of agglomerative hierarchical clustering

* In hierarchical clustering, we started with all observations in clusters of size 1 and then sequentially
grouped them together, according to some measure of homogeneity/similiarity/distance/dissimilarity/loss,
until there was one big cluster.

— The optimal clustering is usually somewhere between the two extremes

* In CART, all observations start in one big group and are split into two subgroups. Each subgroup
is then split into two additional subgroups. This is repeated until some stopping criteria is met (e.g.,
not enough observations in to split further). The terminal subgroup (leaf nodes) are used to make
predictions.

— The splitting is also based on some measure of homogeneity/similarity/loss.

— Since we are in a supervised setting, the splitting criterion should be based on how well the new
groups estimate the outcome variable.

— There is another important difference: in CART only a single feature is used to determine the
split into subgroups.

1.2.1 Model and Model Parameters

Trees model the outcome as a constant in each region (leaf node)

A M A
fx) =) éml(x € Rp)
m=1
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* The model parameters of a tree, T', with M leaf nodes, are:
— The regions (leaf nodes) Ry, ..., Ry
— The coefficients/scores for the regions c1, ..., cps

* Given the regions, leaf-node coefficients are based on the choice of loss function
— Under Squared Error (regression):

em = Ave({y; : X; € Rm})

:NLZZJZ

m X, €ERm

— Under log-loss (soft classification), the coefficients are probability vectors (one element for each
class; sums to one).
Cmi = Proportion of class k in region R,

:NL Yo Wyi=k)

M %, €ERm

— Under 0-1 loss (hard classification), the coefficients are one-hot vectors.

Cmi = One hot for majority class

= 1(k is majority class in region R,,)

— Other options possible; choose the coefficients to optimize your particular objective function.
Consider adding smoothing/penalization/shrinkage. Note: check the loss (implicitly) used in
growing the tree!

1.2.2 Basis Expansion Interpretation

L ]

Ry :by(z1,22) = 1(zy < t1) L(zo < t9)
Ry : bg(xl,a}Q) = Il(xl < tl) ﬂ(.rg > tg)
R3 : b3($1,x2) = ]1(%1 > tl) ]1(1’1 < t3)
Ry :by(x1,20) = T(x1 > 1) 1(x1 > t3) 1(w2 < ty)
Rs : bs(x1,22) = 1(x1 > t1) 1(x1 > t3) L(z2 > t4)
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1.2.3 [Example: Baseball Salaries

The ISLR R package (corresponding to the ISLR textbook), contains data (Hitters) on Major League
Baseball players for the 1986-1987 season.

data (Hitters, package='ISLR')

Here is a CART tree for predicting the salary (in thousands dollars):

CRBI < 308

545
n=200
CAtBat < 1297 Walks < 61

291 (911 )
n=118 (n=82)

RBI < 18 458 AtBat < 585 Hits < 147
n=48 713
n=52
Runs < 34 1025
n=11

Your Turn #1 : Tree Interpretation

1. How many leaf nodes are on the tree?
2. What do the numbers in the boxes mean?

3. How could you evaluate the prediction in a leaf node?

1.3 Growing a Tree
CART uses a greedy algorithm to grow a tree.

 Split the feature space into two pieces and predict the outcome in each region
— Find the predictor j (out of 1,2,...,p) and split point ¢ (from unique ordered values of X or
categories) to minimize the loss function


https://faculty.marshall.usc.edu/gareth-james/ISL/
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— Produces two regions:

Ri(j,t) ={z :2; <t} and Ro(j,t) = {x: z; >t} Numeric/Ordered Feature
or
Ri(j,t) ={z:2; € Aj} and Ra(j,t) = {z : 2; € A;} Nominal/Categorical Feature

» Repeat this step for each child region

» Continue until stopping criteria met, e.g.
— Minimum number of observations in region
— Loss function has minimal improvement
— Maximum depth (number of interactions)

* The final regions are called leaf nodes

1.4 Splitting Details
1.4.1 Regression Trees and Numeric Features

Notice in the fitted tree for the baseball data that the first split was based on a player’s Career RBIs (CRBI).
Specifically, if a player has less than 308 Career RBIs they go down the left side, otherwise they go down
the right side.

Let’s examine this first split:
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* This is basically a univariate change point model
— The split point (CRBI < 308) is the best change point (change in mean) using a Gaussian model
— An alternative perspective is to see that the reduction in MSE/SSE is maximized by splitting at
(CRBI < 308) and fitting the data on each side of the split with a constant.

Splitting Details: Squared Error Loss

Notation
e yeR
o X =[w1,..., 2"

* n observations (in current node/region)
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Consider a split on feature j:

» Consider a split at s (on feature j)

Left Region

Ri(s) ={z:z; < s}

_ 1
yi(s) = — Z Yi
ny .
{é:zi€R1(s)}

Q)= Y wi—0is)?

{i:x;€R1(s)}
 Updated SSE: Q(s) = Q1(s) + Q2(s)
* Gain(s) = Qo — Q(s)

» Before split, the quality of the model, based on SSE is:

1 n
where y = - Z Yi
i=1

Right Region
Ry(s) ={z:z; > s}
_ 1
Ya(s) = — Z Yi
{i:x; ER2(s)}

Q)= Y (- 5a(s)?

{i:x;€ER2(s)}

We can examine the SSE (or Gain) for all possible split points:
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Here’s what it looks like if we consider the split at 400:

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
split.pt
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1.4.2 Regression Trees and Categorical (Nominal) Features

A categorical feature (with k levels) can be split into two groups 2°~! — 1 different ways.

* k = 3: 3 possible partitions
* k = 4: 7 possible partitions
* k£ = 10: 511 possible partitions

The CART approach sorts the categories by the mean response (recodes to numeric) and then splits like its a

numeric feature.
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should be avoided.

— As done by XGBoost

* Note: features with many levels will be split too often. Consider the quote from ESL (pg. 310)

The partitioning algorithm tends to favor categorical predictors with many levels k; the number of
partitions grows exponentially in &, and the more choices we have, the more likely we can find a
good one for the data at hand. This can lead to severe overfitting if k is large, and such variables

¢ An alternative is to use one-hot-encoding to split a categorical feature into k£ new features.

» There are other ways to encode categorical data so they can be treated like numeric (i.e., ordered data)



https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html
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— See e.g., CatBoost

1.4.3 Classification/Probability Trees

A classification tree (or probability tree) is a decision tree used for classifying categorical outcomes:
y€G=(1,2,...,K). The tree recursively partitions the feature space into regions and assigns each region
a class label or probability vector representing the likely outcome of any point falling into that region.

* Inregion R,,, the probability of class k can be estimated as:

pm(k) =Pr(y =k | x € Ry,)
1
= Y. Lyi=k)
M {i:XERm}
N,k
Nm

» Each region R,, is assigned a K -dimensional vector of estimated class probabilities, denoted by:

Dm = [ﬁm(l)’ﬁm(2)’ s 7ﬁm(K)]

where p,, (k) represents the probability estimate for class k in region R,,,. Naturally, these probabilities
must sum to 1:

K
Z ﬁm(k) =1
k=1

There are three common measures of node impurity in this setting:

1. Misclassification Error: This measures the proportion of observations that do not belong to the
majority class in region R,,. It is minimized when all observations in a node belong to the same class:

Qm=1-— mgxﬁm(k)

2. Gini Index: The Gini Index measures the likelihood of that two randomly chosen observations from
the node have different class labels. It is 0 when all observations in a node belong to the same class
and reaches its maximum when class probabilities are uniform.

K
k=1
K
=13 (k)
k=1

3. Cross-Entropy/Deviance: This measures the amount of uncertainty in the node. It is minimized when
one class probability is 1 (i.e., full certainty about class membership) and is maximized when class
probabilities are evenly distributed. It is proportional to the negative of the multinomial log-likelihood
(and hence deviance).


https://arxiv.org/pdf/1706.09516.pdf
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k=1
= iﬁm(k) log — 1
k=1 Pm(k)

1.4.3.1 Example: Consider a node with three classes where the class probabilities are:

Pm(1) = 0.5, pm(2) =03, Pn(3) =02

Misclassification Error

Qm=1-— ml?xﬁm(k)
=1 —max(0.5,0.3,0.2)
=1-0.5=0.5

Gini Index

Qm =1 (Pn(1)? + P (2)* + D (3)?)
=1- (0.52 +0.3% + 0.22)
=1-0.38 =0.62

Cross-Entropy

K
Qm = - Zﬁm(k) logﬁm(k)
k=1

= —(0.510g 0.5 + 0.31l0og 0.3 4+ 0.210g 0.2)
= (0.5 x (—0.6931) + 0.3 x (—1.204) + 0.2 x (—1.6094))
=1.03

1.4.4 Splitting Summary

For each iteration, we calculate the Loss (or Gain) for all features j = 1,2, ..., p and all possible split points.
Choose the pair that minimizes the loss (or maximizes the gain):

(j*,8") = arg min Loss(j, s)
]78

= arg max Gain(j, s)
j’s

where Loss(j, s) is the loss after splitting the current node on the j predictor at split point s.
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1.5 Stopping and Pruning
* Tree Size:

151

1.5.2

— A large tree (i.e., many leaf nodes with few observations) risks overfitting, meaning the model
captures noise in the training data rather than the underlying pattern.
— A small tree may be too simple, failing to capture important structure, leading to underfitting.
— Tree size is a tuning parameter that controls the model’s complexity. The optimal tree size
should be determined adaptively from the data, e.g. through cross-validation.
Early Stopping:
— Stop growing the tree when the improvement in the loss function becomes insignificant, similar
to forward stepwise selection.
— However, be cautious: a seemingly unimportant early split might enable better splits deeper in
the tree (short-sightedness).
Pruning:
— Build a fully grown tree (allowing it to overfit with small terminal nodes), then prune back
unnecessary branches to reduce overfitting, similar to backward stepwise selection.
— Pruning removes splits that do not contribute significantly to reducing the training loss, making
the tree more generalizable and reducing the variance.

Cost Complexity Pruning

Let N,,, be the number of observations in node R,,, and Q,,(T) represent the loss in region m for a
given tree T'. For example, using sum of squared errors as the loss function, we get

Qu(T)= Y (yi—én)?

{i:x;€ERm}
where ¢, is the predicted value for observations within the region R,,. Typically, this is the mean of
vy; for the observations in the region.

Weakest link pruning: This method successively collapses/removes the internal node that produces

the smallest increase in the total loss zlf‘:l Qm(T). This process produces a finite sequence of
increasingly smaller sub-trees, each representing a pruned version of the original tree.

For each sub-tree T, we define its cost complexity

i
OAT) = 3 Qu(T) + AIT|
m=1

= Loss(T) + A Penalty(T)

where ) is a tuning parameter that controls the overall complexity of the tree.

- Note: The complexity of a tree in this setting is measured by the number of leaf nodes, |T|

Penalty Tuning

For each A, there is a unique smallest sub-tree 7 that minimizes C (7).
The sequence of sub-trees from weakest link pruning contains every 1)
The tuning parameter, A can be chosen by: cross-validation, AIC/BIC, Out-of-Bag (OOB), etc.
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Figure 2: Weakest Link Pruning. Tree models housing prices in Sacramento, CA.
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FIGURE R8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

1.6 Special Considerations
1.6.1 Computational Efficiency

1. Instead of considering all possible split points (i.e., unique values) only consider splitting at a subset of
points (e.g., quantiles). This is often achieved by pre-binning the observations for each features.

Parallel evaluation over features

GPU

Subsampling observations

A

Subsample features to evaluate

1.6.2 Missing Predictor Values

1. Omit observations with missing values.
* This is the simplest approach but can lead to a loss of important predictive information, especially
if missing values are not randomly distributed.
2. Create a new category for missing values (Categorical predictors)
* For categorical predictors, create an additional level "missing". This allows the tree to capture
any potential patterns in the data where missing values may be systematically related to the
outcome.

3. Surrogate splits
* At every split in the tree, generate a list of surrogate splits that mimic the original split using
other available predictors.
* During prediction, if an observation has a missing value for the primary splitting variable, use the
surrogate splits to determine which child node the observation should be directed to.
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4. Imputation. Estimate missing values before splitting.

a. Global imputation: before constructing the tree, replace all missing values. The imputation
could be basic, like mean or median substitution, or more advanced multiple imputation.

b. Node Imputation: perform imputation only using the data at each node (same branch of the
tree). This approach uses the “nearest neighbors” observations to perform imputation instead of
all available observations.

5. Random assignment
* Another simple approach is to randomly send observations with missing values in the splitting
variable to a child node.
* A non-random approach is to send observations with missing values to the child node with the
most other observations.

1.6.3 Binary Splitting

» Multiway splits are possible for some implementations (e.g., CHAID, C5.0). But a multiway split can
partition the data too quickly and not lead to good subsequent splits.

* Multiway splits can still be achieved from binary splits trees using a combination of binary splits

— Le., split on X at s; and then split again on X at so
— This will/should happen when the true response is not a constant.

1.6.4 Variable/Feature Importance

In prediction trees, several methods can be used to measure the importance of a feature. Feature importance
helps identify which variables have the greatest influence on prediction. :

1. Frequency of feature used in splits
* One simple way to measure the importance of a feature is to count how often it is used to make a
split in the tree.
Z;(T) = Z 1(split ¢ uses featurey)
t

* Here, Z;(T') represents the importance of feature j in tree 7', and the sum is over all splits ¢ in
tree T'. The indicator function 1 returns 1 if split ¢ uses feature j, and 0 otherwise.

* This method provides a basic frequency count, but it doesn’t consider the significance of the
splits or how much they reduce the prediction error.

2. Predictive improvement of split (Gain based importance)

* A more informative approach is to measure the total reduction in loss (or increase in gain) due
to splits involving the feature. This method considers both the frequency of feature use and the
effectiveness of the split.

* In CART (Classification and Regression Trees), the importance of a feature also includes its use
in surrogate splits.

The importance of feature j in tree 7" can be expressed as:

Z;(T) = Z gain(t) - 1(split ¢ uses featurey)
t

* In this equation, the importance of feature j is the total gain across all splits that involve feature j.
Gain refers to the reduction in the chosen loss function (e.g., Gini index or mean squared error) for
each split.



Prediction Trees
CART, Bagging, and Random Forest DS 6410 | Spring 2025 15/42

* This method is a weighted version of the previous approach, giving more emphasis to features that
contribute to the reduction in error.

3. Permutation-Based Importance (Prediction Version)

* Another popular method for assessing feature importance is permutation-based importance. This
method evaluates how much the predictive performance of the model decreases when the values
of a feature are permuted (shuffled).

* The process is as follows:

1. First, calculate the tree’s performance on a hold-out validation set.
2. Then permute, shuffle, or resample the values of feature j in the validation set.
3. Reassess the model’s performance with the permuted/shuffled/resampled feature.
* The importance of feature j is measured by the decrease in performance due to the permutation:

Z;(T) = Loss(using permuted feature j) — Loss(original)

* A large increase in the loss (i.e., worse model performance) after permutation indicates that the
feature is influential, as the model relied heavily on it to make good predictions.

* This method is particularly useful as it considers the global impact of the feature on the model’s
predictive ability, not just its role in specific splits.

This is only one type of permutation importance. We will explore other ways to assess variable importance later
in the course.

1.7 Prediction Tree Advantages

* Handles both categorical and continuous data consistently
— Trees will work with both categorical and continuous predictors, without requiring extensive
preprocessing or transformations.
* Automatic variable selection
— Trees automatically perform variable selection by choosing only the most important predictors
for splitting at each node. Any predictor not used in a split is effectively excluded from the model
without explicit feature elimination.
* Automatically discovers interactions between multiple predictors
— Trees inherently capture interactions between predictors. The depth of the tree governs the
complexity of these interactions, allowing for multiple levels of interaction to be modeled without
requiring manual specification.
* Locally adaptive estimates
— Because the tree partitions the feature space based on the observed data, it provides locally
adaptive estimates. This means that predictions will be based on the outcomes from the similar
observations.
* Invariant to monotonic transformations
— Trees are typically invariant to monotone transformations of the predictors (e.g., log transforma-
tions, scaling). This property holds because trees rely on the relative ordering of feature values
rather than their absolute values.
* Robust to outliers in feature space
— Trees can be robust to outliers in feature space. This robustness arises because trees split based
on the relative ordering of feature values rather than the raw feature values themselves. Trees
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also fit a constant in each region. Thus, outliers in feature space are less likely to dominate the
model compared to other techniques, like linear regression.
* Easy to interpret / Transparent
— One of the key strengths of prediction trees is their interpretability. The hierarchical structure of a
tree, where each split is a simple decision rule, makes it easy for users to understand and explain
the model’s predictions.
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1.8 Tree Limitations

* Instability (high variance) due to the greedy hierarchical structure.

— Trees are prone to instability (i.e., high variance). A small change in the data, particularly at the
top split, can lead to a significantly different tree structure, causing a cascading effect throughout
the tree. This makes trees highly sensitive to small variations in the dataset.

— Ensemble methods like bagging (e.g., random forests) and boosting can help mitigate this issue
by aggregating multiple trees to reduce variance.

* Difficulty capturing additive structure.

— Trees will struggle to model additive relationships between predictors. For instance, if the true
relationship is a linear combination of features (e.g., y = S1x1 + Pax2), trees will have difficulty
capturing this pattern.

— Trees are well suited for detecting interactions and non-linear relationships, but they may perform
poorly when the data have a strong additive structure, unless ensemble methods are used (stay
tuned).

Regular 4-Mode Trea Bumpad 4-Node Trae

FIGURE .13, Date audh hoo feafures and b cfeases Wue ond orange), dis

g ¢ paere erbernotLom T

* Bias towards dominant features.

— Trees can be biased towards categorical features that have many levels. This can result in the tree

splitting on these features, even if they are not the most informative.
* Lack of smooth predictions.

— Remember that trees generate piecewise constant prediction surfaces that can result in abrupt
jumps between predictions for neighboring observations.

— Because all observations that fall into the same leaf node get the same prediction, there can be
multiple observations with the same predicted values. Ensure that subsequent evaluation metrics
can properly handle ties.

 Predictive Bias (or mis-calibration)

— tree will often produce predictions that are biased (also known as mis-calibrated). We will study

this topic later in the semester.
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1.9 Prediction Trees in R

Main R packages: tree and rpart and party
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2 Trees Demo

2.1 Required R Packages

library (ISLR)
library (rpart)

( Hitters baseball data
(
library (rpart.plot)
(
(

classification and regression trees (CART)

for “prp ()  which allows more plotting control for trees
for ‘randomForest ()  function

data manipulation and visualization

library (randomForest)
library (tidyverse)

S W R R W

2.2 Baseball Salary Data

The goal is to build models to predict the salary of baseball players

#-— Make Baseball Data
# Goal is to predict the log Salary

library (ISLR)
Hitters = ISLR::Hitters %>%

filter(!is.na(Salary)) %>% # remove missing Salary
# mutate (Salary = log(Salary)) %>% # convert to log Salary
rename (Y = Salary)

set.seed (2019) # choose 200 samples for training (leaving only 63 for testing)
train.ind = sample (nrow(Hitters), size=200)
bball = Hitters[train.ind, ]

#- test data
X.test = Hitters[-train.ind, ] %>% select (-Y)
Y.test = Hitters|[—-train.ind, ] %>% pull (Y)

bball %>% arrange (-Y) %>% head() %>% as_tibble (rownames = "name")

#> # A tibble: 6 x 21

#> name AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
#> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 —-Eddie Mu~ 495 151 17 61 84 78 10 5624 1679 275 884
#> 2 —-Jim Rice 618 200 20 98 110 62 13 7127 2163 351 1104
#> 3 —-Mike Sch~ 20 1 0 0 0 0 2 41 9 2 6
#> 4 —-Don Matt~ 677 238 31 117 113 53 5 2223 737 93 349
#> 5 —Ozzie Sm~ 514 144 0 67 54 79 9 4739 1169 13 583
#> 6 —Gary Car~ 490 125 24 81 105 62 13 6063 1646 271 847
#> # 1 9 more variables: CRBI <int>, CWalks <int>, League <fct>, Division <fct>,

#> # PutOuts <int>, Assists <int>, Errors <int>, Y <dbl>, NewLeague <fct>

2.3 Regression Tree
2.3.1 Build Tree

HARBHHHARRRHHHARRBHHHRRRAHHBRRRAHRBRERHH AR REHHA AR RHH SRR R A SRR

#-— Regression Trees in R

# trees are in many packages: rpart, tree, party,

# there are also many packages to display tree results

#

# Formulas: you don't need to specify interactions as the tree does this
# naturally.
HARRRRRAHHARRRRBHHHRRRRBBHHHRRRRRBAHHR AR RS BHHHRRRRBBHHHRRR R R HHH

#-— Build Tree
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library (rpart)
tree = rpart (¥Y~., data=bball)
summary (tree, cp=1)

#> Call:

#> rpart (formula = Y ~ ., data = bball)

#> n= 200

#>

#> CP nsplit rel error Xerror xstd

#> 1 0.39734 0 1.0000 1.0071 0.1517

#> 2 0.11976 1 0.6027 0.6265 0.1140

#> 3 0.04832 2 0.4829 0.5959 0.1127

#> 4 0.03453 3 0.4346 0.5672 0.1154

#> 5 0.02898 4 0.4001 0.6263 0.1211

#> 6 0.01593 5 0.3711 0.6296 0.1208

#> 7 0.01143 6 0.3551 0.6272 0.1207

#> 8 0.01000 7 0.3437 0.6294 0.1204

#>

#> Variable importance

#> CRBI CRuns CHits CAtBat CWalks CHmRun Walks Runs Hits AtBat RBI
#> 16 15 14 14 14 12 5 4 2 2 1
#> HmRun

#> 1

#>

#> Node number 1: 200 observations

#> mean=545.1, MSE=2.347e+05

length (unique (tree$where)) # number of leaf nodes

#> [1] 8

#-— Plot Tree
library (rpart.plot) # for prp() which allows more plotting control
prp(tree, type=1l, extra=1l, branch=1)

# rpart () functions can also plot (just not as good) :
# plot (tree, uniform=TRUE)
# text (tree, use.n=TRUE, xpd=TRUE)

CRBI < 308
545
n=200

CAtBat < 1297 Walks < 61

291 ( 911 )
n=118 (n=82)

RBI >= 18 458 AtBat < 585 Hits < 147
n=48

Runs < 34
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2.3.2 Evaluate Tree

#- mean squared error function
mse <- function (yhat, y) {
yvhat = as.matrix (yhat)
apply (vhat, 2, \(f) mean((y-£f)"2))

mse (predict (tree), bball$Y) # training error
#> [1] 80680
mse (predict (tree, X.test), Y.test) # testing error

#> [1] 59872

Build a more complex tree

#-— More complex tree

# see ?rpart.control () for details

# xval: number of cross-validations

# minsplit: min obs to still allow a split
# cp: complexity parameter

tree2 = rpart (¥~., data=bball, xval=0, minsplit=5, cp=0.005)
summary (tree2, cp=1)

#> Call:

#> rpart (formula = Y ~ ., data = bball, xval = 0, minsplit = 5,
#> cp = 0.005)

#> n= 200

#>

#> CP nsplit rel error

#> 1 0.397337 0 1.0000

#> 2 0.119759 1 0.6027

#> 3 0.048320 2 0.4829

#> 4 0.042372 3 0.4346

#> 5 0.037284 4 0.3922

#> 6 0.032953 6 0.3176

#> 7 0.025089 7 0.2847

#> 8 0.021944 8 0.2596

#> 9 0.021814 9 0.2377

#> 10 0.016670 10 0.2158

#> 11 0.011547 11 0.1992

#> 12 0.008095 12 0.1876

#> 13 0.007354 13 0.1795

#> 14 0.005854 15 0.1648

#> 15 0.005786 16 0.1590

#> 16 0.005148 17 0.1532

#> 17 0.005000 19 0.1429

#>

#> Variable importance

#> CRuns CRBI CAtBat CHits CWalks CHmRun Walks Runs Hits AtBat
#> 14 14 13 12 11 10 6 5 5 4
#> PutOuts RBI Years Assists HmRun Errors

#> 1 1 1 1 1 1

#>

#> Node number 1: 200 observations
#> mean=545.1, MSE=2.347e+05
length (unique (tree2$where))

#> [1] 20
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prp (tree2, type=1, extra=1l, branch=1)

mse (predict (tree2), bballS$y) # training error
#> [1] 33541
mse (predict (tree2, X.test), Y.test) # testing error

#> [1] 75146

CRBI < 308

n=200 ‘
CAtBat < 1297 Walks < 61
291 (911
{ loz82) \
AtBat >= 127 NewLeagu = A CAtBat >= 2277 Hits < 123

CRBI < 996
1375
n=24
Hits < 159 PutOuts < 195

1216
n=18

Runs >= 69 Walks < 75

Now, fit a set of trees for sequence of cp values.

cp = seq(.05,0,1length=100) # cp is like a penalty on the tree size

for(i in 1l:length(cp)) {
if(1i == 1) {train.error = test.error = nleafs = numeric(length(cp)) }
tree.fit = rpart (Y~.,data=bball, xval=0, minsplit=5, cp=cp[i])
train.error[i] = mse (predict (tree.fit),bballs$y) # training error
test.error[i] = mse (predict (tree.fit,X.test),Y.test) # testing error
nleafs[i] = length (unique (tree.fit$where))

plot (range (cp) , range (train.error, test.error),typ="'n',xlab="cp",ylab="mse", las=1)
lines (cp,train.error,col="black", lwd=2)

lines (cp, test.error,col="red", lwd=2)

legend ("top",c('train error', 'test error'),col=c("black","red"), lwd=2)

axis (3, at=cp, labels=nleafs)

mtext ("number of leaf nodes",3,1line=2.5)
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number of leaf nodes

72 26 16 13 12 11 11 9 8 8 8 7 7 5 5 4 4 3
L

— train error
1e+05 — — test error
8e+04 —
(]
=
6e+04 —
4e+04 —
2e+04 1 T T T T
0.00 0.01 0.02 0.03 0.04 0.05
cp
2.3.3 Regression Tree example with 2 dimensions only
Consider the two variables Years and Hits and their relationship to Y.
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Let’s fit a tree with the two predictors
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Hits < 123

545
‘ n=200

Years <7 Years <5

353 851
n=123 n=77

225 Hits < 91 323 Hits < 185
n=73 n=17 {1001\

(n=60)

Years <7
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And we can also use more complex trees:

1328
n=7

__

2000
1500
1000
500
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2.4 Details of Splitting (for Regression Trees)

Going back to building a tree with all predictor variables. Recall that CRBT is split at 307 . 5.

CRBI < 308

545
n=200

CAtBat < 1297 Walks < 61
291 (911 )
n=118 (n=82)

RBI >=18 458 AtBat < 585 Hits < 147
n=48 713
n=52
Runs < 34 1025
n=11

2.4.1 First Split

Under the hood, trees will search all possibly split points for all predictor variables. It will use the variable
and associated split point that has the maximum gain (or improvement in evaluation metric).

var splitpt nL nR estL est.R SSE.L SSE.R SSE gain
CRBI 307.5 118 82 290.5 911.5 8010622 20282448 28293070 18653665
CHits 4575 93 107 229.0 819.9 5299313 24273274 29572587 17374148
CAtBat 1779.5 95 105 236.8 824.0 5574003 24175441 29749444 17197291
CRuns 288.0 109 91 2777 8654 7452616 22368698 29821314 17125421

CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333
CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634

Hits 1225 123 77 3534 8514 11979104 23225406 35204510 11742225
Years 45 69 131 2195 716.6 5807172 29967467 35774639 11172096
RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952
Walks 61.5 155 45 4244 961.0 19360871 17541643 36902514 10044222
AtBat 4735 124 76 372.1  827.4 13829528 23351912 37181440 9765295
Runs 59.5 115 85 361.0 7942 11945002 25829983 37774985 9171750
HmRun 85 94 106 357.6 7114 12526389 28182028 40708417 6238318
PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362
Errors 45 71 129 4335 606.5 7733767 37842076 45575843 1370892

Assists 60.5 111 89 4834  622.1 20984841 25011176 45996017 950719
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2.4.2 Second Split (left): CAtBat < 1296.5
second split (left)

gain

CAtBat CHits CRuns CRBI
2000000
1500000 A
1000000 -
500000
01— - - - - - ———— - - :
1000 2000 3000 250 500 750 1000100 200 300 400 100 200 300
CWalks CHmRun Years AtBat
2000000 4
1500000 A
1000000 -
500000
100 200 40 60 80 100 5.0 7.5 10.012.5 30040050060070C
RBI Hits Runs Errors
2000000
1500000 -
1000000 -
500000 -
50 75 100 100 150 200 50 75 100 10 20 30
Assists PutOuts HmRun Walks
2000000 -
1500000 -
1000000 -
500000 -
100200300400 500 1000 10 20 30 40 60 80

Sp
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var splitpt n.L nR estL estR SSE.L SSE.R SSE gain
CAtBat 1296.5 70 48 17577 458.0 4142792 1599385 5742177 2268445
CHits 357.0 77 41 1922 475.1 4385523 1484232 5869754 2140868
CRuns 153.0 68 50 1789 4423 4202620 1808176 6010797 1999825
CRBI 140.0 73 45 1949 4456 4612088 1648340 6260429 1750193

CWalks 111.0 74 44 1979 446.2 4682658 1626914 6309572 1701050
CHmRun 255 73 45 2094 4221 4950482 1800792 6751274 1259349

Years 35 48 70 168.0 374.6 4065840 2729314 6795153 1215469
AtBat 3235 50 68 2223 340.7 4391102 3215583 7606685 403937
RBI 435 64 54 236.8 3542 5514802 2092255 7607057 403565
Hits 153.0 105 13 2719 440.8 7158659 522192 7680851 329771
Runs 56.5 77 41 2554 356.5 5887826 1849136 7736962 273661
Errors 25 17 101 1799 309.2 172699 7594684 7767383 243239

Assists 2165 90 28 265.8 3699 3189715 4589431 7779145 231477
PutOuts 508.0 107 11 276.7 4253 7138760 651614 7790374 220248
HmRun 125 84 34 2653 352.8 6395242 1429943 7825185 185437
Walks 61.5 103 15 2789 370.7 7018267 881993 7900261 110361
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2.4.3 Second Split (right): Walks < 61
second split (right)

gain
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var split.pt nL nR est.L est.R SSE.L SSE.R SSE gain
Walks 61.0 52 30 712.6 1256.2 5842326 8817840 14660166 5622282
AtBat 428.0 26 56 5549 1077.0 2032940 13410065 15443005 4839443
Hits 1225 30 52 5959 1093.5 2674697 12898042 15572738 4709710
Runs 80.5 58 24 7639 1268.1 9627677 6339423 15967100 4315348
RBI 79.5 57 25 7609 125477 8028152 8016141 16044292 4238156
PutOuts 839.5 73 9 8404 1487.7 14312345 2613789 16926134 3356314
Years 145 64 18 1009.2 5639 16198744 1298244 17496988 2785460
HmRun 235 65 17 8204 12595 14245529 3438753 17684283 2598166
Errors 45 29 53 6904 10324 3230563 14859766 18090329 2192119

CHmRun 2500 69 13  841.3 1283.9 11497937 6641903 18139840 2142609
CRuns 769.0 56 26 8143 1120.7 8769462 9847003 18616465 1665983
CRBI 8185 59 23  830.7 1118.7 9605277 9304706 18909983 1372466
CHits 1640.0 62 20 849.2 1104.6 10823636 8472147 19295784 986665
CWalks 10235 79 3 9306 407.5 19425851 65712 19491563 790885
CAtBat 7653.5 77 5 9346 5548 19376696 228517 19605214 677234
Assists 1720 60 22 941.0 830.9 16318132 3769004 20087137 195311

3 Bagging Trees

3.1 Better Trees

Due to the inherent instability of prediction trees, they are ideal candidates for methods that can reduce
variance, such as bagging (Bootstrap Aggregating). Bagging works by generating multiple trees from
bootstrap samples of the training data and averaging their predictions.

* Grow a set of B trees, each from a different bootstrap sample, and then average their predictions:
. 18 .
fl@)= 2> T(;0)
B b=1

- 6, represents the parameters for tree b, including the split variables, cutpoints, and terminal node
values, all derived from the bootstrap sample D,.

— This averaging over many trees reduces the sensitivity of the model to small changes in the data,
addressing the instability and high variance of single trees.

* Bagging = Bootstrap Aggregating

— The term “bagging” is a contraction of Bootstrap Aggregating.

* For a deeper dive into the methodology, see Breiman’s article “Bagging Predictors” (1996, Machine
Learning). This seminal paper offers detailed advice on when bagging is most beneficial and when it
may not provide significant improvements.

— For example, Bagging works well in reducing the variance of models but does not significantly
reduce bias. Therefore, bagging is most effective for models prone to high variance, such as deep
prediction trees.

* Bagging produces an ensemble model:

— By combining multiple trees, bagging creates an ensemble model that averages the predictions of
individual trees, smoothing out noise and providing more stable predictions.

* Aggregation of Bagged Predictors:

a. regression: the final prediction is the average of the predictions from the individual tres.
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b. classification: the final predicted probabilities are the average of the probability estimates from
the individual trees. Another option is to use majority voting where each tree votes for the class
label, but take care to adjust for class imbalance or unequal misclassification costs.
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3.1.1 Variance Reduction with Bagging

A helpful probability cheatsheet can be found here: https://github.com/wzchen/probability_cheatsheet/blob/mas
ter/probability_cheatsheet.pdf
Properties of Variance/Covariance

V(X) = B(X?) - (B(X))?

= Cov(X, X)
Cov(X1,X5) = E(X1Xs) — E(X;) E(Xy)
Cor(X;, X;) = VKo Xy)
V(Xi) V(X;)

V(X1 + X2) = V(X1) + V(X2) + 2 Cov(Xy, Xa)
\Y% <a Zp: Xi> = a? Zp: V(X;) +2a* Y Cov(X;, X;)
i=1 i=1 i<j
Variance Reduction
* Let 0 be something we want to estimate (e.g., § = f(z)) and 6 an estimate.
¢ Suppose we have M models to estimate § which produces the estimates {@1, ég, o0}

* One way to make an ensemble prediction is from the average
* The expected value of the ensemble is:

¢ The variance of the ensemble is:

M
~ 1 A 2 A A
V(9) = SV ZV(@') tae ZCOV(‘% 0;)

=1

i<j

1 L 2 — -
=2 > Vi) + U > A/ V(:) V(6;) Cor(8;, 65)
i=1 i<j
¢ Thus to reduce the variance, we want to use models that have low correlation.
- If Cor(éi, éj) =0 V4,7, then variance is minimized (for example, when the models are indepen-
dent)
- If Cor(éi7 éj) =1 Vi,j, then there is no (variance reduction) benefit of using an ensemble.
— In Bagging, each model is a tree fit with a bootstrap sample.
— For unstable models, like trees, the bagged models will have low correlation, but for more stable
models, like linear regression, the bagged models will maintain high correlation.



https://github.com/wzchen/probability_cheatsheet/blob/master/probability_cheatsheet.pdf
https://github.com/wzchen/probability_cheatsheet/blob/master/probability_cheatsheet.pdf

Prediction Trees

CART, Bagging, and Random Forest DS 6410 | Spring 2025

34/42

3.2 Bagging Trees
Highlight node is for Pete Rose.

Assists CHmRun | CRBI | CRuns | CWalks | Errors | Hits

HmRun | PutOuts | RBI | Runs

Walks

43 237 4256 | 160 1314 | 2165 1566 6 52

0 523 25 15

30

AtBat | CAtBat | CHits
14053
Original Tree
CRBI < 308
545
n=200
Walks < 61
911
n=82
AtBat < 585
713
n=52
Runs < 34

Bootstrap Tree: 3
CHits < 469

575
=200

RBI < 103

826
n=114
Walks < 67
757 )
0=104

CHmRun < 216

644
n=81

Hits < 72

o

(309
oz
Bootstrap Tree: 6
[es) CRuns < 288 o]

526
n=200

Walks < 65
902
n=88,

AtBat < 503

Bootstrap Tree: 9

(yes] CRBI <313 [mo)

578
n=200

Walks < 67

965
n=84

PutOuts < 352

797
n=59

Runs <79

Bootstrap Tree: 1
CRBI <300

553
n=200

RBI < 103

930
n=83

Hits < 160
837
AtBat < 422
741
n=57

Years >= 13

Bootstrap Tree: 4
Caeat <1011
”

Bootstrap Tree: 7

CRBI <278

531
=200
Walks < 61
899
n=87
Runs < 34

706
n=58

372
n=12

Bootstrap Tree: 10
CRBI <278
580

=200

Walks < 40

945
0=87

AtBat < 392

Bootstrap Tree: 12
CRBI <301

( 601
(=200

Walks < 74

956

Walks < 38

807
n=71
CRBI >= 380
584
n=28

BN

Bootstrap Tree: 2
CRBI < 308
589

=200
RBI<79

941
0=86 86

Walks < 67

7
o=t

Runs <34

G

Bootstrap Tree: 5

CRBI < 306

568
n=200
Walks < 61

984
n=81
AtBat < 583
-

Hits < 90

Bootstrap Tree: 8
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(ESL pg 587) “The essential idea in bagging is to average many noisy but approximately unbiased models,
and hence reduce the variance.”

* Thus when Bagging trees, grow deep trees to reduce bias and use many bootstrap samples to
reduce variance.

3.2.1 Correlation
These are the pairwise correlation between predictions from the trees.
o — N

1 N MO < 1O O© N~ 00 o «H «A

1 1.000.730.600.730.840.690.770.690.780.830.750.75
0.731.000.57/0.610.790.620.820.630.770.760.750.55 1 °°
0.60/0.57/1.000.79/0.64/0.78/0.590.54(0.53/0.58/0.66/0.59 0.6

0.730.61/0.7911.000.67/0.790.69/0.64/0.62/0.700.700.63| ' 0.4

r 0.2
0.690.620.78/0.790.67/1.0000.76/0.50/0.65/0.660.71/0.59

- 0
0.770.82/0.59/0.690.840.761.00/0.63/0.800.790.780.74

r—0.2

2
3
4
5 0.840.790.64/0.671.000.670.840.73/0.820.870.74/0.69
6
7
8

0.690.63/0.54/0.64/0.73/0.50/0.63|1.00/0.76/0.680.66/0.58

9 10.78/0.77/0.530.620.820.65(0.800.76/1.0000.750.750.62 | [ 0-4
10 /0.83/0.76/0.580.700.87/0.66/0.790.680.751.000.660.73 {8 -0.6
11 /0.75/0.75/0.66/0.70/0.74/0.710.78/0.66/0.750.66/1.000.56
12 /0.75/0.58/0.59/0.63/0.69/0.590.74/0.580.62/0.73/0.56/1.00

3.2.2 Bagging can smooth predictions
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Figure 4: Average of bootstrap predictions
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4 Random Forest

4.1 Random Forest

Random Forest is a modification of bagging that attempts to build de-correlated trees by considering a
restricted set of features for splitting.

Algorithm 15.1 Random Forest for Regression or Classification.

1. Forb=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree Ty to the hootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {1}, }7.
To make a prediction at a new point z:
. ; B
Regression: fR(x) = £33, Tu(x).

Classification: Let éb(:l.') be the class prediction of the bth random-forest
tree. Then CZ(x) = magjority vote {Cy(x)}E.

* Note: I recommend aggregating the probabilities for classification trees instead of majority vote.

4.1.1 Illustration of Restricted Set of Features for Splitting

var splitpt nL. nR estL est.R SSE.L SSE.R SSE gain
CRBI 3075 118 82 290.5 911.5 8010622 20282448 28293070 18653665
CHits 457.5 93 107 229.0 819.9 5299313 24273274 29572587 17374148
CAtBat 1779.5 95 105 236.8 824.0 5574003 24175441 29749444 17197291
CRuns 288.0 109 91 277.7 8654 7452616 22368698 29821314 17125421

CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333
CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634

Hits 1225 123 77 3534 8514 11979104 23225406 35204510 11742225
Years 45 69 131 2195 716.6 5807172 29967467 35774639 11172096
RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952
Walks 61.5 155 45 4244 961.0 19360871 17541643 36902514 10044222
AtBat 4735 124 76 372.1  827.4 13829528 23351912 37181440 9765295
Runs 59.5 115 85 361.0 7942 11945002 25829983 37774985 9171750
HmRun 85 94 106 3576 7114 12526389 28182028 40708417 6238318
PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362
Errors 45 71 129 4335 606.5 7733767 37842076 45575843 1370892

Assists 60.5 111 89 4834  622.1 20984841 25011176 45996017 950719




Prediction Trees

CART, Bagging, and Random Forest

DS 6410 | Spring 2025

38/42

gain

1.5e+07

1.0e+07 4

5.0e+06

0.0e+00 A

1.5e+07

1.0e+07

5.0e+06

0.0e+00

1.5e+07

1.0e+07

5.0e+06

0.0e+00

1.5e+07

1.0e+07 4

5.0e+06 4

0.0e+00 4

first split
CRBI CHits CAtBat CRuns
0 50010001500 50000BGEDAB00 2506000500 0 500 1000
CWalks CHmMRun Hits Years
0 5001000 10R0BOGIO0 100150200 5 10 15
RBI Walks AtBat Runs
50 75100 40 60 80 10R0B0GOGOBOTFO0 50 75 10012
HmRun PutOuts Errors Assists
10 20 30 500 1000 10 20 300 10@0BOGOBGO0

split.pt

selected
FALSE

B TRUE



Prediction Trees
CART, Bagging, and Random Forest

DS 6410 | Spring 2025

39/42

var splitpt n.L nR estL estR SSE.L SSE.R SSE gain
CAtBat 1296.5 70 48 175.77 458.0 4142792 1599385 5742177 2268445
CHits 357.0 77 41 192.2 475.1 4385523 1484232 5869754 2140868
CRuns 153.0 68 50 1789 4423 4202620 1808176 6010797 1999825
CRBI 140.0 73 45 1949 4456 4612088 1648340 6260429 1750193
CWalks 111.0 74 44 1979 446.2 4682658 1626914 6309572 1701050
CHmRun 25.5 73 45 209.4 422.1 4950482 1800792 6751274 1259349
Years 35 48 70 168.0 374.6 4065840 2729314 6795153 1215469
AtBat 323.5 50 68 2223 340.7 4391102 3215583 7606685 403937
RBI 43.5 64 54 236.8 354.2 5514802 2092255 7607057 403565
Hits 153.0 105 13 2719 440.8 7158659 522192 7680851 329771
Runs 56.5 77 41 2554 356.5 5887826 1849136 7736962 273661
Errors 2.5 17 101 179.9 309.2 172699 7594684 7767383 243239
Assists 216.5 90 28 265.8 369.9 3189715 4589431 7779145 231477
PutOuts 508.0 107 11 2767 4253 7138760 651614 7790374 220248
HmRun 12.5 84 34 2653 352.8 6395242 1429943 7825185 185437
Walks 61.5 103 15 2789 370.7 7018267 881993 7900261 110361
second split: left
CAtBat CHits CRuns CRBI
2000000 1
1500000 A
1000000 A
500000 1
o1 - - _
100@00(B000  2505007501.00Q00200300400 100 200 300
CWalks CHmMRun Years AtBat
2000000 -
1500000 1
1000000 1
500000 -
00 | —— selected
< 100 200 40 60 80100 5.0 7.510.01.2.530%40G0G0OX00
g RBI Hits Runs Errors PALSE
B TRUE
2000000 1
1500000 1
1000000 A
500000 -
o1~ - M =N
50 75100 100 150 200 50 75 100 10 20 30
Assists PutOuts HmRun Walks
2000000 1
1500000 A
1000000 A
500000 1
0 - I : : — A
10@0BOG00 500 1000 10 20 30 40 60 80

split.pt
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4.1.2 Correlation

These are the pairwise correlation between predictions from the trees.

o —
— N o™ <t Lo O N~ (o0] (@) — — 1
1 1.00 0.71 0.61
0.8
2 1.00/0.62/0.68 0.72/0.68 0.68/0.70
0.6
3 0.621.00 0.58 0.63/0.57 0.64/0.58
4 0.68/0.58/1.00 0.81/0.64 0.66/0.62 [ 94
51/0.71 1.00 0.57 0.64 | 02
6 0.72/0.63/0.81 1.000.56 0.60/0.69/|  ©
7 0.68/0.57/0.64 0.56/1.00 0.750.76 | L-g2
8 1.00 L 04
9 0.57 1.00
-0.6
10 0.68/0.64/0.66 0.60/0.75 1.000.75
-0.8
11 |0.61/0.70/0.58/0.62/0.64/0.69/0.76 0.751.00
-1

4.2 Random Forest Tuning
There are two primary tuning parameters for Random Forest:

1. Variety: mitry controls the number of predictors that are evaluated for each split (this is named
max_ features scikit-learn)

2. Complexity: The depth/size of the trees are controlled by setting the minimum number of observations
in the leaf nodes (min.obs) or the depth of the tree or the number of leaf nodes

How do these tuning parameters relate to the bias/variance trade-off?

* The tuning parameters can be determined from cross-validation or OOB error
* In randomForest and ranger packages:

— For classification, the default value is mtry = |/p| and min.obs = 1.
— For regression, the default value is mtry = |p/3| and min.obs = 5.
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* The number of trees is another tuning parameter, but want this to be as large as possible (subject to
computational and memory constraints)

— See This stats.stackexchange answer for further explanation.

4.3 OOB error

For each observation (z;, y;), construct its OOB prediction by averaging only those trees corresponding to
bootstrap samples in which observation i did not appear.

~ 1 ~
flz) = Np(h) I; 1(x; € OOB(b)) - T(xi; 0p)

where Np(i) is the number of trees with observation i out-of-bag.

* Recall that there is a 37% chance that any observation is out-of-bag in any bootstrap sample.
* Thus, Np(i) ~ 0.37B (the number of trees used to estimate the OOB error is about 37% of the total
number of trees in the forest).
— More encouragement to use many trees in the forest

w
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5 8-
A o
=
o —
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B8
€ 3
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=t
= -
=] I I I I T T
] 500 1000 1500 2000 2500
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Figure 15.4 in ESL

4.4 Variable Importance

At each split in each tree, the improvement in the split-criterion is the importance measure attributed to the
splitting variable, and is accumulated over all the trees in the forest separately for each variable.

The importance of predictor j in a single tree 1"

Z;(T) = Z gain(t) - 1(split ¢ uses featurey)
¢


https://stats.stackexchange.com/questions/348245/do-we-have-to-tune-the-number-of-trees-in-a-random-forest
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That is, the importance of feature j in tree 7' is the total gain from all splits involving feature j. In the
equation, the sum is over all splits ¢ in tree 7.

The importance of predictor j in a forest is the average importance from all trees in the forest:
1 B
Ii=5 > Li(Ty)
b=1

* Note: a final normalizing step may transform importance scores to sum to 1
* There are other ways to measure feature importance, like permutation.

4.5 Random Forest and k-NN

Random Forests (especially with almost fully grown trees) are similar to £-NN methods, but they adaptively
determines the neighbors instead of needing to pre-specify a distance metric.

Random Forest Classifier 3-Nearest Neighbors

. ol Cj
) T _ C

Training Errar: 0.000 Training Errar: 0.130
Tast Error: 0.238 Test Errorn 0.242
Bayes Error: 0210 Bayes Error: - 0.210

FIGURE 15.11. Random forests versus 3-NN on the
mizture data. The azis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.

4.6 Random Forests in R

* randomForest

* ranger

* randomForestSRC

* Rborist

* party

* aorsf Oblique Random Forests

* tidymodels https://parsnip.tidymodels.org/reference/rand_forest.html


https://docs.ropensci.org/aorsf/reference/orsf.html
https://parsnip.tidymodels.org/reference/rand_forest.html
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