Prediction Trees # CART, Bagging, and Random Forest # DS 6410 | Spring 2025 # trees.pdf # **Contents** | 1 | Clas | ssification and Regression Tree Intro | 2 | |---|------|---|----| | | 1.1 | Prediction Trees | 2 | | | 1.2 | Recursive Binary Partition (CART) | | | | 1.3 | Growing a Tree | | | | 1.4 | Splitting Details | | | | 1.5 | Stopping and Pruning | | | | 1.6 | Special Considerations | 13 | | | 1.7 | Prediction Tree Advantages | | | | 1.8 | Tree Limitations | 17 | | | 1.9 | Prediction Trees in R | 18 | | 2 | Tree | es Demo | 19 | | | 2.1 | Required R Packages | 19 | | | 2.2 | Baseball Salary Data | | | | 2.3 | Regression Tree | | | | 2.4 | Details of Splitting (for Regression Trees) | | | 3 | Bag | ging Trees | 31 | | | 3.1 | Better Trees | | | | 3.2 | Bagging Trees | | | 4 | Ran | dom Forest | 37 | | • | 4.1 | Random Forest | | | | 4.2 | Random Forest Tuning | | | | 4.3 | OOB error | | | | 4.4 | Variable Importance | | | | 4.5 | Random Forest and k-NN | | | | 4.6 | Random Forests in R | | Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani. # 1 Classification and Regression Tree Intro Tree-based methods: - 1. Partition the feature space into a set of (hyper) rectangles. - 2. Fit a simple model (e.g., constant) in each region. They are conceptually simple yet powerful. - Main Characteristics: - flexibility, intuitive, non-model based - natural graphical display, easy to interpret - building blocks of Random Forest and (Tree-based) Boosting - naturally includes feature interactions - reduces need for monotonic feature transformations - Main Implementations: - CART (Classification and Regression Trees) by Breiman, Friedman, Olshen, Stone (1984) - C4.5 Quinlan (1993) - Conditional Inference Trees (party R package) # 1.1 Prediction Trees Figure 1: Regression Tree Prediction of House Pricing in Sacramento, CA #### 1.1.1 Prediction Tree Loss functions As usual, we want find the trees that make predictions which minimizes some loss function. - Classification trees have class probabilities at the leaves (e.g., the probability of heavy rain is 0.9). - E.g., Loss = Negative Binomial likelihood. - Regression trees have a mean response at the leaves. (e.g., the expected amount of rain is 2in). - E.g., Loss = Mean squared error. # 1.2 Recursive Binary Partition (CART) Because the number of possible trees is too large to exhaustively search, we usually restrict attention to recursive binary partition trees (CART). • These are also easy to interpret Think of the *reverse* of agglomerative hierarchical clustering - In hierarchical clustering, we started with all observations in clusters of size 1 and then sequentially grouped them together, according to some measure of *homogeneity/similiarity/distance/dissimilarity/loss*, until there was one big cluster. - The optimal clustering is usually somewhere between the two extremes - In CART, all observations start in one big group and are split into two subgroups. Each subgroup is then split into two additional subgroups. This is repeated until some stopping criteria is met (e.g., not enough observations in to split further). The terminal subgroup (leaf nodes) are used to make predictions. - The splitting is also based on some measure of homogeneity/similarity/loss. - Since we are in a supervised setting, the splitting criterion should be based on how well the new groups estimate the outcome variable. - There is another important difference: in CART *only a single feature* is used to determine the split into subgroups. ## 1.2.1 Model and Model Parameters Trees model the outcome as a *constant* in each region (leaf node) $$\hat{f}(\mathbf{x}) = \sum_{m=1}^{M} \hat{c}_m \, \mathbb{1}(\mathbf{x} \in \hat{R}_m)$$ - The *model parameters* of a tree, T, with M leaf nodes, are: - The regions (leaf nodes) R_1, \ldots, R_M - The coefficients/scores for the regions c_1, \ldots, c_M - Given the regions, leaf-node coefficients are based on the choice of loss function - Under Squared Error (regression): $$\hat{c}_m = \text{Ave}(\{y_i : \mathbf{x}_i \in R_m\})$$ $$= \frac{1}{N_m} \sum_{i: \mathbf{x}_i \in R_m} y_i$$ - Under log-loss (soft classification), the coefficients are probability *vectors* (one element for each class; sums to one). $$\begin{split} \hat{c}_{mk} &= \text{Proportion of class } k \text{ in region } R_m \\ &= \frac{1}{N_m} \sum_{i: \mathbf{x}_i \in R_m} \mathbb{1}(y_i = k) \end{split}$$ - Under 0-1 loss (hard classification), the coefficients are one-hot vectors. $$\hat{c}_{mk} = ext{One hot for majority class}$$ $$= \mathbb{1}(k ext{ is majority class in region } R_m)$$ Other options possible; choose the coefficients to optimize your particular objective function. Consider adding smoothing/penalization/shrinkage. Note: check the loss (implicitly) used in growing the tree! #### 1.2.2 Basis Expansion Interpretation $$f(x) = \sum_{m=1}^{M} \theta_m b_m(x)$$ $$\begin{split} R_1: b_1(x_1, x_2) &= \mathbbm{1}(x_1 \le t_1) \, \mathbbm{1}(x_2 \le t_2) \\ R_2: b_2(x_1, x_2) &= \mathbbm{1}(x_1 \le t_1) \, \mathbbm{1}(x_2 > t_2) \\ R_3: b_3(x_1, x_2) &= \mathbbm{1}(x_1 > t_1) \, \mathbbm{1}(x_1 \le t_3) \\ R_4: b_4(x_1, x_2) &= \mathbbm{1}(x_1 > t_1) \, \mathbbm{1}(x_1 > t_3) \, \mathbbm{1}(x_2 \le t_4) \\ R_5: b_5(x_1, x_2) &= \mathbbm{1}(x_1 > t_1) \, \mathbbm{1}(x_1 > t_3) \, \mathbbm{1}(x_2 > t_4) \end{split}$$ # 1.2.3 Example: Baseball Salaries The ISLR R package (corresponding to the ISLR textbook), contains data (Hitters) on Major League Baseball players for the 1986-1987 season. data(Hitters, package='ISLR') Here is a CART tree for predicting the salary (in thousands dollars): # Your Turn #1: Tree Interpretation - 1. How many leaf nodes are on the tree? - 2. What do the numbers in the boxes mean? - 3. How could you evaluate the prediction in a leaf node? # 1.3 Growing a Tree CART uses a greedy algorithm to grow a tree. - Split the feature space into two pieces and predict the outcome in each region - Find the predictor j (out of 1, 2, ..., p) and split point t (from unique ordered values of X_j or categories) to minimize the *loss function* - Produces two regions: CART, Bagging, and Random Forest $$R_1(j,t)=\{x:x_j\leq t\}$$ and $R_2(j,t)=\{x:x_j>t\}$ Numeric/Ordered Feature or $$R_1(j,t)=\{x:x_j\in A_j\} \text{ and } R_2(j,t)=\{x:x_j\not\in A_j\}$$ Nominal/Categorical Feature - Repeat this step for each child region - Continue until stopping criteria met, e.g. - Minimum number of observations in region - Loss function has minimal improvement - Maximum depth (number of interactions) - The final regions are called leaf nodes # 1.4 Splitting Details # 1.4.1 Regression Trees and Numeric Features Notice in the fitted tree for the baseball data that the first split was based on a player's *Career RBIs* (CRBI). Specifically, if a player has less than 308 Career RBIs they go down the left side, otherwise they go down the right side. Let's examine this first split: - This is basically a univariate *change point model* - The split point (CRBI < 308) is the best change point (change in mean) using a Gaussian model - An alternative perspective is to see that the reduction in MSE/SSE is maximized by splitting at (CRBI < 308) and fitting the data on each side of the split with a constant. # **Splitting Details: Squared Error Loss** #### Notation - $u \in \mathbb{R}$ - $\mathbf{x} = [x_1, \dots, x_p]^\mathsf{T}$ - *n* observations (in current node/region) Consider a split on feature j: • Before split, the quality of the model, based on SSE is: $$Q_0 = \sum_{i=1}^{n} (y_i - \bar{y})^2$$ where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ Right Region • Consider a split at s (on feature j) ### **Left Region** $$R_{1}(s) = \{x : x_{j} < s\}$$ $$\bar{y}_{1}(s) = \frac{1}{n_{1}} \sum_{\{i : x_{i} \in R_{1}(s)\}} y_{i}$$ $$\bar{y}_{2}(s) = \frac{1}{n_{2}} \sum_{\{i : x_{i} \in R_{2}(s)\}} y_{i}$$ $$Q_{1}(s) = \sum_{\{i : x_{i} \in R_{1}(s)\}} (y_{i} - \bar{y}_{1}(s))^{2}$$ $$Q_{2}(s) = \sum_{\{i : x_{i} \in R_{2}(s)\}} (y_{i} - \bar{y}_{2}(s))^{2}$$ - Updated SSE: $Q(s) = Q_1(s) + Q_2(s)$ - $\operatorname{Gain}(s) = Q_0 Q(s)$ We can examine the SSE (or Gain) for all possible split points: Here's what it looks like if we consider the split at 400: # 1.4.2 Regression Trees and Categorical (Nominal) Features A categorical feature (with k levels) can be split into two groups $2^{k-1} - 1$ different ways. - k = 3: 3 possible partitions - k = 4: 7 possible partitions - k = 10: 511 possible partitions The CART approach sorts the categories by the mean response (recodes to numeric) and then splits like its a numeric feature. ### **Note** - Note: features with many levels will be split too often. Consider the quote from ESL (pg. 310) - The partitioning algorithm tends to favor categorical predictors with many levels k; the number of partitions grows exponentially in k, and the more choices we have, the more likely we can find a good one for the data at hand. This can lead to severe overfitting if k is large, and such variables should be avoided. - An alternative is to use one-hot-encoding to split a categorical feature into k new features. - As done by XGBoost - There are other ways to encode categorical data so they can be treated like numeric (i.e., ordered data) - See e.g., CatBoost #### 1.4.3 Classification/Probability Trees A classification tree (or probability tree) is a decision tree used for classifying categorical outcomes: $y \in \mathcal{G} = (1, 2, ..., K)$. The tree recursively partitions the feature space into regions and assigns each region a class label or probability vector representing the likely outcome of any point falling into that region. • In region R_m , the probability of class k can be estimated as: $$\bar{p}_m(k) = \widehat{\Pr}(y = k \mid \mathbf{x}
\in R_m)$$ $$= \frac{1}{n_m} \sum_{\{i: \mathbf{x} \in R_m\}} \mathbb{1}(y_i = k)$$ $$= \frac{n_{m,k}}{n_m}$$ • Each region R_m is assigned a K-dimensional vector of estimated class probabilities, denoted by: $$\bar{p}_m = [\bar{p}_m(1), \bar{p}_m(2), \dots, \bar{p}_m(K)]$$ where $\bar{p}_m(k)$ represents the probability estimate for class k in region R_m . Naturally, these probabilities must sum to 1: $$\sum_{k=1}^{K} \bar{p}_m(k) = 1$$ There are three common measures of *node impurity* in this setting: 1. **Misclassification Error**: This measures the proportion of observations that do not belong to the majority class in region R_m . It is minimized when all observations in a node belong to the same class: $$Q_m = 1 - \max_{k} \bar{p}_m(k)$$ 2. **Gini Index**: The Gini Index measures the likelihood of that two randomly chosen observations from the node have different class labels. It is 0 when all observations in a node belong to the same class and reaches its maximum when class probabilities are uniform. $$Q_m = \sum_{k=1}^{K} \bar{p}_m(k)(1 - \bar{p}_m(k))$$ $$= 1 - \sum_{k=1}^{K} \bar{p}_m^2(k)$$ 3. **Cross-Entropy/Deviance**: This measures the amount of uncertainty in the node. It is minimized when one class probability is 1 (i.e., full certainty about class membership) and is maximized when class probabilities are evenly distributed. It is proportional to the negative of the multinomial log-likelihood (and hence deviance). $$Q_m = -\sum_{k=1}^K \bar{p}_m(k) \log \bar{p}_m(k)$$ $$= \sum_{k=1}^K \bar{p}_m(k) \log \frac{1}{\bar{p}_m(k)}$$ ## **1.4.3.1** Example: Consider a node with three classes where the class probabilities are: $$\bar{p}_m(1) = 0.5, \quad \bar{p}_m(2) = 0.3, \quad \bar{p}_m(3) = 0.2$$ ### **Misclassification Error** $$Q_m = 1 - \max_{k} \bar{p}_m(k)$$ = 1 - \text{max}(0.5, 0.3, 0.2) = 1 - 0.5 = 0.5 #### Gini Index $$Q_m = 1 - \left(\bar{p}_m(1)^2 + \bar{p}_m(2)^2 + \bar{p}_m(3)^2\right)$$ $$= 1 - \left(0.5^2 + 0.3^2 + 0.2^2\right)$$ $$= 1 - 0.38 = 0.62$$ #### **Cross-Entropy** $$Q_m = -\sum_{k=1}^K \bar{p}_m(k) \log \bar{p}_m(k)$$ $$= -(0.5 \log 0.5 + 0.3 \log 0.3 + 0.2 \log 0.2)$$ $$= -(0.5 \times (-0.6931) + 0.3 \times (-1.204) + 0.2 \times (-1.6094))$$ $$= 1.03$$ # 1.4.4 Splitting Summary For each iteration, we calculate the Loss (or Gain) for *all* features j = 1, 2, ..., p and *all* possible split points. Choose the pair that minimizes the loss (or maximizes the gain): $$(j^*, s^*) = \underset{j,s}{\operatorname{arg\,min}} \operatorname{Loss}(j, s)$$ $$= \underset{j,s}{\operatorname{arg\,max}} \operatorname{Gain}(j, s)$$ where Loss(j, s) is the loss after splitting the current node on the j predictor at split point s. # 1.5 Stopping and Pruning #### Tree Size: - A large tree (i.e., many leaf nodes with few observations) risks overfitting, meaning the model captures noise in the training data rather than the underlying pattern. - A small tree may be too simple, failing to capture important structure, leading to **underfitting**. - Tree size is a **tuning parameter** that controls the model's complexity. The optimal tree size should be determined adaptively from the data, e.g. through cross-validation. #### • Early Stopping: - Stop growing the tree when the improvement in the loss function becomes insignificant, similar to forward stepwise selection. - However, be cautious: a seemingly unimportant early split might enable better splits deeper in the tree (short-sightedness). # • Pruning: - Build a fully grown tree (allowing it to overfit with small terminal nodes), then prune back unnecessary branches to reduce overfitting, similar to backward stepwise selection. - Pruning removes splits that do not contribute significantly to reducing the training loss, making the tree more generalizable and reducing the variance. # 1.5.1 Cost Complexity Pruning • Let N_m be the number of observations in node R_m and $Q_m(T)$ represent the loss in region m for a given tree T. For example, using sum of squared errors as the loss function, we get $$Q_m(T) = \sum_{\{i: x_i \in R_m\}} (y_i - \hat{c}_m)^2$$ - where \hat{c}_m is the predicted value for observations within the region R_m . Typically, this is the mean of y_i for the observations in the region. - Weakest link pruning: This method successively collapses/removes the internal node that produces the smallest increase in the total loss $\sum_{m=1}^{|T|} Q_m(T)$. This process produces a finite sequence of increasingly smaller sub-trees, each representing a pruned version of the original tree. - For each sub-tree T, we define its cost complexity $$C_{\lambda}(T) = \frac{1}{n} \sum_{m=1}^{|T|} Q_m(T) + \lambda |T|$$ $$= \text{Loss}(T) + \lambda \text{ Penalty}(T)$$ where λ is a tuning parameter that controls the overall complexity of the tree. - Note: The *complexity* of a tree in this setting is measured by the *number of leaf nodes*, |T| ### 1.5.2 Penalty Tuning - For each λ , there is a unique smallest sub-tree T_{λ} that minimizes $C_{\lambda}(T)$. - The sequence of sub-trees from weakest link pruning contains every T_{λ} - The tuning parameter, λ can be chosen by: cross-validation, AIC/BIC, Out-of-Bag (OOB), etc. CART, Bagging, and Random Forest Figure 2: Weakest Link Pruning. Tree models housing prices in Sacramento, CA. FIGURE 8.5. Regression tree analysis for the Hitters data. The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree size of three. # 1.6 Special Considerations ## 1.6.1 Computational Efficiency - 1. Instead of considering *all* possible split points (i.e., unique values) only consider splitting at a subset of points (e.g., quantiles). This is often achieved by pre-binning the observations for each features. - 2. Parallel evaluation over features - 3. GPU - 4. Subsampling observations - 5. Subsample features to evaluate ### 1.6.2 Missing Predictor Values - 1. Omit observations with missing values. - This is the simplest approach but can lead to a loss of important predictive information, especially if missing values are not randomly distributed. - 2. Create a new category for missing values (Categorical predictors) - For categorical predictors, create an additional level "missing". This allows the tree to capture any potential patterns in the data where *missing* values may be systematically related to the outcome. ### 3. Surrogate splits - At every split in the tree, generate a list of *surrogate splits* that mimic the original split using other available predictors. - During prediction, if an observation has a missing value for the primary splitting variable, use the surrogate splits to determine which child node the observation should be directed to. - 4. Imputation. Estimate missing values before splitting. - a. **Global imputation:** before constructing the tree, replace all missing values. The imputation could be basic, like mean or median substitution, or more advanced multiple imputation. - b. **Node Imputation:** perform imputation only using the data at each node (same branch of the tree). This approach uses the "nearest neighbors" observations to perform imputation instead of all available observations. - 5. Random assignment - Another simple approach is to *randomly send* observations with missing values in the splitting variable to a child node. - A non-random approach is to send observations with missing values to the child node with the most other observations. # 1.6.3 Binary Splitting - Multiway splits are possible for some implementations (e.g., CHAID, C5.0). But a multiway split can partition the data too quickly and not lead to good subsequent splits. - Multiway splits can still be achieved from binary splits trees using a combination of binary splits - I.e., split on X_1 at s_1 and then split again on X_1 at s_2 - This will/should happen when the true response is not a constant. # 1.6.4 Variable/Feature Importance In prediction trees, several methods can be used to measure the *importance* of a feature. Feature importance helps identify which variables have the greatest influence on prediction. : - 1. Frequency of feature used in splits - One simple way to measure the importance of a feature is to count how often it is used to make a split in the tree. $$\mathcal{I}_j(T) = \sum_t \mathbb{1}(\operatorname{split} t \text{ uses feature} j)$$ - Here, $\mathcal{I}_j(T)$ represents the importance of feature j in tree T, and the sum is over all splits t in tree T. The indicator function \mathbb{I} returns 1 if split t uses feature j, and 0 otherwise. - This method provides a basic frequency count, but it doesn't consider the significance of the splits or how much they reduce the prediction error. - 2. Predictive improvement of split (Gain based importance) - A more informative approach is to measure the total *reduction in loss* (or increase in gain) due to splits involving the feature. This method considers both the frequency of feature use and the effectiveness of the split. - In CART (Classification and Regression Trees), the importance of a feature also includes its use in surrogate splits. The importance of feature j in tree T can be expressed as: $$\mathcal{I}_j(T) = \sum_t \mathrm{gain}(t) \cdot \mathbb{1}(\mathrm{split}\ t \ \mathrm{uses}\ \mathrm{feature} j)$$ • In this equation, the importance of feature j is the total *gain* across all splits that involve feature j. Gain refers to the reduction in the chosen loss function (e.g., Gini index or mean squared error) for each split. - This method is a *weighted* version of the previous approach, giving more emphasis to features that contribute to the reduction in error. - 3. Permutation-Based Importance (Prediction Version) - Another popular method for assessing feature importance is *permutation-based importance*. This method evaluates how
much the predictive performance of the model decreases when the values of a feature are permuted (shuffled). - The process is as follows: - 1. First, calculate the tree's performance on a hold-out validation set. - 2. Then permute, shuffle, or resample the values of feature j in the validation set. - 3. Reassess the model's performance with the permuted/shuffled/resampled feature. - The importance of feature j is measured by the decrease in performance due to the permutation: $$\mathcal{I}_j(T) = \text{Loss(using permuted feature } j) - \text{Loss(original)}$$ - A large increase in the loss (i.e., worse model performance) after permutation indicates that the feature is influential, as the model relied heavily on it to make good predictions. - This method is particularly useful as it considers the *global impact* of the feature on the model's predictive ability, not just its role in specific splits. # **Note** This is only one type of permutation importance. We will explore other ways to assess variable importance later in the course. # 1.7 Prediction Tree Advantages - Handles both categorical and continuous data consistently - Trees will work with both categorical and continuous predictors, without requiring extensive preprocessing or transformations. - Automatic variable selection - Trees automatically perform variable selection by choosing only the most important predictors for splitting at each node. Any predictor not used in a split is effectively excluded from the model without explicit feature elimination. - Automatically discovers interactions between multiple predictors - Trees inherently capture interactions between predictors. The depth of the tree governs the complexity of these interactions, allowing for multiple levels of interaction to be modeled without requiring manual specification. - Locally adaptive estimates - Because the tree partitions the feature space based on the observed data, it provides *locally adaptive* estimates. This means that predictions will be based on the outcomes from the similar observations. - Invariant to monotonic transformations - Trees are typically invariant to monotone transformations of the predictors (e.g., log transformations, scaling). This property holds because trees rely on the relative ordering of feature values rather than their absolute values. - Robust to outliers in feature space - Trees can be robust to outliers in feature space. This robustness arises because trees split based on the relative ordering of feature values rather than the raw feature values themselves. Trees also fit a constant in each region. Thus, outliers in feature space are less likely to dominate the model compared to other techniques, like linear regression. - Easy to interpret / Transparent - One of the key strengths of prediction trees is their interpretability. The hierarchical structure of a tree, where each split is a simple decision rule, makes it easy for users to understand and explain the model's predictions. #### 1.8 Tree Limitations - Instability (high variance) due to the greedy hierarchical structure. - Trees are prone to instability (i.e., high variance). A small change in the data, particularly at the top split, can lead to a significantly different tree structure, causing a cascading effect throughout the tree. This makes trees highly sensitive to small variations in the dataset. - Ensemble methods like bagging (e.g., random forests) and boosting can help mitigate this issue by aggregating multiple trees to reduce variance. - Difficulty capturing additive structure. - Trees will struggle to model additive relationships between predictors. For instance, if the true relationship is a linear combination of features (e.g., $y = \beta_1 x_1 + \beta_2 x_2$), trees will have difficulty capturing this pattern. - Trees are well suited for detecting interactions and non-linear relationships, but they may perform poorly when the data have a strong additive structure, unless ensemble methods are used (stay tuned). FIGURE 8.13. Data with two features and two classes (blue and orange), displaying a pure interaction. The left panel shows the partition found by three splits of a standard, greedy, tree-growing algorithm. The vertical grey line near the left edge is the first split, and the broken lines are the two subsequent splits. The algorithm has no idea where to make a good initial split, and makes a poor choice. The right panel shows the near-optimal splits found by bumping the tree-growing algorithm 20 times. - Bias towards dominant features. - Trees can be biased towards categorical features that have many levels. This can result in the tree splitting on these features, even if they are not the most informative. - Lack of smooth predictions. - Remember that trees generate piecewise constant prediction surfaces that can result in abrupt jumps between predictions for neighboring observations. - Because all observations that fall into the same leaf node get the same prediction, there can be multiple observations with the same predicted values. Ensure that subsequent evaluation metrics can properly handle ties. - Predictive Bias (or mis-calibration) - tree will often produce predictions that are biased (also known as mis-calibrated). We will study this topic later in the semester. # 1.9 Prediction Trees in R Main R packages: tree and rpart and party # 2 Trees Demo # 2.1 Required R Packages ``` library(ISLR) # Hitters baseball data library(rpart) # classification and regression trees (CART) library(rpart.plot) # for `prp()` which allows more plotting control for trees library(randomForest) # for `randomForest()` function library(tidyverse) # data manipulation and visualization ``` # 2.2 Baseball Salary Data The goal is to build models to predict the salary of baseball players ``` #-- Make Baseball Data # Goal is to predict the log Salary library (ISLR) Hitters = ISLR::Hitters %>% filter(!is.na(Salary)) %>% # remove missing Salary # mutate(Salary = log(Salary)) %>% # convert to log Salary rename(Y = Salary) set.seed(2019) # choose 200 samples for training (leaving only 63 for testing) train.ind = sample(nrow(Hitters), size=200) bball = Hitters[train.ind,] #- test data X.test = Hitters[-train.ind,] %>% select(-Y) Y.test = Hitters[-train.ind,] %>% pull(Y) bball %>% arrange(-Y) %>% head() %>% as_tibble(rownames = "name") #> # A tibble: 6 x 21 #> 1 -Eddie Mu~ 495 151 17 61 84 78 10 5624 1679 275 884 #> 2 -Jim Rice 618 200 20 98 110 62 13 7127 2163 351 1104 #> 3 -Mike Sch~ 20 1 0 0 0 0 2 41 9 2 6 #> 4 -Don Matt~ 677 238 31 117 113 53 5 2223 737 93 349 #> 5 -Ozzie Sm~ 514 144 0 67 54 79 9 4739 1169 13 583 #> 6 -Gary Car~ 490 125 24 81 105 62 13 6063 1646 271 847 #> # i 9 more variables: CRBI <int>, CWalks <int>, League <fct>, Division <fct>, #> # PutOuts <int>, Assists <int>, Errors <int>, Y <dbl>, NewLeague <fct> ``` # 2.3 Regression Tree #### 2.3.1 Build Tree CART, Bagging, and Random Forest ``` library(rpart) tree = rpart(Y~., data=bball) summary(tree, cp=1) #> Call: #> rpart(formula = Y ~ ., data = bball) \#> n=200 #> #> CP nsplit rel error xerror xstd 0 1.0000 1.0071 0.1517 #> 1 0.39734 1 0.6027 0.6265 0.1140 #> 2 0.11976 #> 3 0.04832 2 0.4829 0.5959 0.1127 #> 4 0.03453 3 0.4346 0.5672 0.1154 #> 5 0.02898 4 0.4001 0.6263 0.1211 5 #> 6 0.01593 0.3711 0.6296 0.1208 #> 7 0.01143 6 0.3551 0.6272 0.1207 7 0.3437 0.6294 0.1204 #> 8 0.01000 #> #> Variable importance #> CRBI CRuns CHits CAtBat CWalks CHmRun Walks Runs Hits AtBat 16 15 14 14 14 12 5 4 2 1 #> #> HmRun #> 1 #> #> Node number 1: 200 observations #> mean=545.1, MSE=2.347e+05 length (unique (tree$where)) # number of leaf nodes #> [1] 8 #-- Plot Tree library(rpart.plot) # for prp() which allows more plotting control prp(tree, type=1, extra=1, branch=1) # rpart() functions can also plot (just not as good): # plot(tree, uniform=TRUE) # text(tree, use.n=TRUE, xpd=TRUE) ``` #### 2.3.2 Evaluate Tree ``` #- mean squared error function mse <- function(yhat, y) {</pre> yhat = as.matrix(yhat) apply (yhat, 2, \backslash (f) mean ((y-f)^2)) mse(predict(tree), bball$Y) # training error #> [1] 80680 mse(predict(tree, X.test), Y.test) # testing error #> [1] 59872 ``` #### Build a more complex tree ``` #-- More complex tree # see ?rpart.control() for details # xval: number of cross-validations # minsplit: min obs to still allow a split # cp: complexity parameter tree2 = rpart(Y~., data=bball, xval=0, minsplit=5, cp=0.005) summary(tree2, cp=1) #> Call: #> rpart(formula = Y ~ ., data = bball, xval = 0, minsplit = 5, \#> cp = 0.005) \#> n=200 #> #> CP nsplit rel error #> 1 0.397337 0 1.0000 #> 2 0.119759 1 0.6027 #> 3 0.048320 2 0.4829 #> 4 0.042372 3 0.4346 #> 5 0.037284 4 0.3922 #> 6 0.032953 6 0.3176 #> 7 0.025089 7 0.2847 #> 8 0.021944 8 0.2596 #> 9 0.021814 9 0.2377 #> 10 0.016670 10 0.2158 #> 11 0.011547 11 0.1992 #> 12 0.008095 12 0.1876 #> 13 0.007354 13 0.1795 #> 14 0.005854 15 0.1648 #> 15 0.005786 16 0.1590 #> 16 0.005148 17 0.1532 #> 17 0.005000 19 0.1429 #> #> CP nsplit rel error #> #> Variable importance #> CRuns CRBI CAtBat CHits CWalks CHmRun Walks Runs Hits AtBat 14 13 12 11 10 6 5 #> 14 5 #> #> Node number 1: 200 observations #> mean=545.1, MSE=2.347e+05 length(unique(tree2$where)) #> [1] 20 ``` ``` mse(predict(tree2), bball$Y) # training error #> [1] 33541 mse(predict(tree2, X.test), Y.test) # testing error #> [1] 75146 ``` Now, fit a set of trees for sequence of cp values. ``` cp = seq(.05,0,length=100) # cp is like a penalty on the tree size for(i in 1:length(cp)) { if(i == 1) {train.error = test.error = nleafs = numeric(length(cp)) } tree.fit = rpart(Y~.,data=bball, xval=0, minsplit=5, cp=cp[i]) train.error[i] = mse(predict(tree.fit),bball$Y) # training error test.error[i] = mse(predict(tree.fit,X.test),Y.test) # testing error nleafs[i] = length(unique(tree.fit,$where)) } plot(range(cp),range(train.error,test.error),typ='n',xlab="cp",ylab="mse",las=1) lines(cp,train.error,col="black",lwd=2)
lines(cp,test.error,col="red",lwd=2) legend("top",c('train error','test error'),col=c("black","red"),lwd=2) axis(3,at=cp,labels=nleafs) mtext("number of leaf nodes",3,line=2.5) ``` CART, Bagging, and Random Forest # 2.3.3 Regression Tree example with 2 dimensions only Consider the two variables Years and Hits and their relationship to Y. Let's fit a tree with the two predictors CART, Bagging, and Random Forest And we can also use more complex trees: # 2.4 Details of Splitting (for Regression Trees) Going back to building a tree with all predictor variables. Recall that CRBI is split at 307.5. # 2.4.1 First Split Under the hood, trees will search all possibly split points for all predictor variables. It will use the variable and associated split point that has the maximum gain (or improvement in evaluation metric). | 1104 | anlit nt | n I | n.R | ost I | est.R | SSE.L | SSE.R | SSE | goin | |---------|----------|-----|------|-------|--------|----------|----------|----------|----------| | var | split.pt | n.L | II.K | est.L | est.K | SSE.L | 33E.K | 33E | gain | | CRBI | 307.5 | 118 | 82 | 290.5 | 911.5 | 8010622 | 20282448 | 28293070 | 18653665 | | CHits | 457.5 | 93 | 107 | 229.0 | 819.9 | 5299313 | 24273274 | 29572587 | 17374148 | | CAtBat | 1779.5 | 95 | 105 | 236.8 | 824.0 | 5574003 | 24175441 | 29749444 | 17197291 | | CRuns | 288.0 | 109 | 91 | 277.7 | 865.4 | 7452616 | 22368698 | 29821314 | 17125421 | | CWalks | 157.5 | 90 | 110 | 246.6 | 789.3 | 6768757 | 25600645 | 32369403 | 14577333 | | CHmRun | 101.5 | 156 | 44 | 409.9 | 1024.6 | 21520628 | 12459474 | 33980101 | 12966634 | | Hits | 122.5 | 123 | 77 | 353.4 | 851.4 | 11979104 | 23225406 | 35204510 | 11742225 | | Years | 4.5 | 69 | 131 | 219.5 | 716.6 | 5807172 | 29967467 | 35774639 | 11172096 | | RBI | 69.5 | 147 | 53 | 406.0 | 931.1 | 18079731 | 18126052 | 36205783 | 10740952 | | Walks | 61.5 | 155 | 45 | 424.4 | 961.0 | 19360871 | 17541643 | 36902514 | 10044222 | | AtBat | 473.5 | 124 | 76 | 372.1 | 827.4 | 13829528 | 23351912 | 37181440 | 9765295 | | Runs | 59.5 | 115 | 85 | 361.0 | 794.2 | 11945002 | 25829983 | 37774985 | 9171750 | | HmRun | 8.5 | 94 | 106 | 357.6 | 711.4 | 12526389 | 28182028 | 40708417 | 6238318 | | PutOuts | 809.0 | 186 | 14 | 502.1 | 1116.7 | 35199872 | 6828501 | 42028373 | 4918362 | | Errors | 4.5 | 71 | 129 | 433.5 | 606.5 | 7733767 | 37842076 | 45575843 | 1370892 | | Assists | 60.5 | 111 | 89 | 483.4 | 622.1 | 20984841 | 25011176 | 45996017 | 950719 | 5.0e+06 0.0e+00 20 500 1000 10 split.pt 20 30 0 100200300400500 # $\textbf{2.4.2} \quad \textbf{Second Split (left): CAtBat} < \textbf{1296.5}$ CART, Bagging, and Random Forest # second split (left) | var | split.pt | n.L | n.R | est.L | est.R | SSE.L | SSE.R | SSE | gain | |---------|----------|-----|-----|-------|-------|---------|---------|---------|---------| | CAtBat | 1296.5 | 70 | 48 | 175.7 | 458.0 | 4142792 | 1599385 | 5742177 | 2268445 | | CHits | 357.0 | 77 | 41 | 192.2 | 475.1 | 4385523 | 1484232 | 5869754 | 2140868 | | CRuns | 153.0 | 68 | 50 | 178.9 | 442.3 | 4202620 | 1808176 | 6010797 | 1999825 | | CRBI | 140.0 | 73 | 45 | 194.9 | 445.6 | 4612088 | 1648340 | 6260429 | 1750193 | | CWalks | 111.0 | 74 | 44 | 197.9 | 446.2 | 4682658 | 1626914 | 6309572 | 1701050 | | CHmRun | 25.5 | 73 | 45 | 209.4 | 422.1 | 4950482 | 1800792 | 6751274 | 1259349 | | Years | 3.5 | 48 | 70 | 168.0 | 374.6 | 4065840 | 2729314 | 6795153 | 1215469 | | AtBat | 323.5 | 50 | 68 | 222.3 | 340.7 | 4391102 | 3215583 | 7606685 | 403937 | | RBI | 43.5 | 64 | 54 | 236.8 | 354.2 | 5514802 | 2092255 | 7607057 | 403565 | | Hits | 153.0 | 105 | 13 | 271.9 | 440.8 | 7158659 | 522192 | 7680851 | 329771 | | Runs | 56.5 | 77 | 41 | 255.4 | 356.5 | 5887826 | 1849136 | 7736962 | 273661 | | Errors | 2.5 | 17 | 101 | 179.9 | 309.2 | 172699 | 7594684 | 7767383 | 243239 | | Assists | 216.5 | 90 | 28 | 265.8 | 369.9 | 3189715 | 4589431 | 7779145 | 231477 | | PutOuts | 508.0 | 107 | 11 | 276.7 | 425.3 | 7138760 | 651614 | 7790374 | 220248 | | HmRun | 12.5 | 84 | 34 | 265.3 | 352.8 | 6395242 | 1429943 | 7825185 | 185437 | | Walks | 61.5 | 103 | 15 | 278.9 | 370.7 | 7018267 | 881993 | 7900261 | 110361 | # $2.4.3 \quad Second \ Split \ (right): \ Walks < 61$ # second split (right) | var | split.pt | n.L | n.R | est.L | est.R | SSE.L | SSE.R | SSE | gain | |---------|----------|-----|-----|--------|--------|----------|----------|----------|---------| | Walks | 61.0 | 52 | 30 | 712.6 | 1256.2 | 5842326 | 8817840 | 14660166 | 5622282 | | AtBat | 428.0 | 26 | 56 | 554.9 | 1077.0 | 2032940 | 13410065 | 15443005 | 4839443 | | Hits | 122.5 | 30 | 52 | 595.9 | 1093.5 | 2674697 | 12898042 | 15572738 | 4709710 | | Runs | 80.5 | 58 | 24 | 763.9 | 1268.1 | 9627677 | 6339423 | 15967100 | 4315348 | | RBI | 79.5 | 57 | 25 | 760.9 | 1254.7 | 8028152 | 8016141 | 16044292 | 4238156 | | PutOuts | 839.5 | 73 | 9 | 840.4 | 1487.7 | 14312345 | 2613789 | 16926134 | 3356314 | | Years | 14.5 | 64 | 18 | 1009.2 | 563.9 | 16198744 | 1298244 | 17496988 | 2785460 | | HmRun | 23.5 | 65 | 17 | 820.4 | 1259.5 | 14245529 | 3438753 | 17684283 | 2598166 | | Errors | 4.5 | 29 | 53 | 690.4 | 1032.4 | 3230563 | 14859766 | 18090329 | 2192119 | | CHmRun | 250.0 | 69 | 13 | 841.3 | 1283.9 | 11497937 | 6641903 | 18139840 | 2142609 | | CRuns | 769.0 | 56 | 26 | 814.3 | 1120.7 | 8769462 | 9847003 | 18616465 | 1665983 | | CRBI | 818.5 | 59 | 23 | 830.7 | 1118.7 | 9605277 | 9304706 | 18909983 | 1372466 | | CHits | 1640.0 | 62 | 20 | 849.2 | 1104.6 | 10823636 | 8472147 | 19295784 | 986665 | | CWalks | 1023.5 | 79 | 3 | 930.6 | 407.5 | 19425851 | 65712 | 19491563 | 790885 | | CAtBat | 7653.5 | 77 | 5 | 934.6 | 554.8 | 19376696 | 228517 | 19605214 | 677234 | | Assists | 172.0 | 60 | 22 | 941.0 | 830.9 | 16318132 | 3769004 | 20087137 | 195311 | # 3 Bagging Trees ### 3.1 Better Trees Due to the inherent instability of prediction trees, they are ideal candidates for methods that can reduce variance, such as **bagging** (Bootstrap Aggregating). Bagging works by generating multiple trees from bootstrap samples of the training data and averaging their predictions. • Grow a set of B trees, each from a different bootstrap sample, and then average their predictions: $$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \hat{\theta}_b)$$ - $\hat{\theta}_b$ represents the parameters for tree b, including the split variables, cutpoints, and terminal node values, all derived from the bootstrap sample \mathcal{D}_b . - This averaging over many trees reduces the sensitivity of the model to small changes in the data, addressing the instability and high variance of single trees. - Bagging = Bootstrap Aggregating - The term "bagging" is a contraction of **B**ootstrap **Agg**regating. - For a deeper dive into the methodology, see Breiman's article "Bagging Predictors" (1996, *Machine Learning*). This seminal paper offers detailed advice on when bagging is most beneficial and when it may not provide significant improvements. - For example, Bagging works well in reducing the variance of models but does not significantly reduce bias. Therefore, bagging is most effective for models prone to high variance, such as deep prediction trees. - Bagging produces an ensemble model: - By combining multiple trees, bagging creates an *ensemble model* that averages the predictions of individual trees, smoothing out noise and providing more stable predictions. - Aggregation of Bagged Predictors: - a. regression: the final prediction is the average of the predictions from the individual tres. b. *classification*: the final predicted probabilities are the average of the probability estimates from the individual trees. Another option is to use *majority voting* where each tree votes for the class label, but take care to adjust for class imbalance or unequal misclassification costs. # 3.1.1 Variance Reduction with Bagging #### **Note** A helpful probability cheatsheet can be found here: https://github.com/wzchen/probability_cheatsheet/blob/master/probability_cheatsheet.pdf # **Properties of Variance/Covariance** $$V(X) = E(X^{2}) - (E(X))^{2}$$ $$= Cov(X, X)$$ $$Cov(X_{1}, X_{2}) = E(X_{1}X_{2}) - E(X_{1}) E(X_{2})$$ $$Cor(X_{i}, X_{j}) = \frac{Cov(X_{i}, X_{j})}{\sqrt{V(X_{i}) V(X_{j})}}$$ $$V(X_{1} + X_{2}) = V(X_{1}) + V(X_{2}) + 2 Cov(X_{1}, X_{2})$$ $$V\left(a \sum_{i=1}^{p} X_{i}\right) = a^{2} \sum_{i=1}^{p} V(X_{i}) + 2a^{2} \sum_{i < j} Cov(X_{i}, X_{j})$$ #### Variance Reduction - Let θ be something we want to estimate (e.g., $\theta = f(x)$) and $\hat{\theta}$ an estimate. - Suppose we have M models to estimate θ which produces the estimates $\{\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_M\}$ - One way to make an ensemble prediction is from the average $$\bar{\theta} = \frac{1}{M} \sum_{i=1}^{M} \hat{\theta}_i$$ • The **expected value** of the ensemble is: $$E(\bar{\theta}) = \frac{1}{M} \sum_{i=1}^{M} E(\hat{\theta}_i)$$ • The **variance** of the ensemble is: $$V(\bar{\theta}) = \frac{1}{M^2} \sum_{i=1}^{M} V(\hat{\theta}_i) + \frac{2}{M^2} \sum_{i < j} Cov(\hat{\theta}_i, \hat{\theta}_j)$$ $$= \frac{1}{M^2} \sum_{i=1}^{M} V(\hat{\theta}_i) + \frac{2}{M^2} \sum_{i < j} \sqrt{V(\hat{\theta}_i) V(\hat{\theta}_j)} Cor(\hat{\theta}_i, \hat{\theta}_j)$$ - Thus to reduce the variance, we want to use models that have low correlation. - If $Cor(\hat{\theta}_i, \hat{\theta}_j) = 0 \quad \forall i, j$, then variance is minimized (for example, when the models are *independent*) - If $Cor(\hat{\theta}_i, \hat{\theta}_j) = 1 \quad \forall i, j$, then there is no (variance reduction) benefit of using an ensemble. - In Bagging, each *model* is a tree fit with a bootstrap sample. - For unstable models, like trees, the bagged models will have low correlation, but for more stable models, like linear regression, the bagged models will maintain high correlation. # 3.2 Bagging Trees Highlight node is for Pete Rose. | Assists | AtBat | CAtBat | CHits | CHmRun | CRBI | CRuns | CWalks |
Errors | Hits | HmRun | PutOuts | RBI | Runs | Walks | |---------|-------|--------|-------|--------|------|-------|--------|--------|------|-------|---------|-----|------|-------| | 43 | 237 | 14053 | 4256 | 160 | 1314 | 2165 | 1566 | 6 | 52 | 0 | 523 | 25 | 15 | 30 | (ESL pg 587) "The essential idea in bagging is to average many noisy but approximately unbiased models, and hence reduce the variance." • Thus when Bagging trees, grow deep trees to reduce bias and use many bootstrap samples to reduce variance. #### 3.2.1 Correlation These are the pairwise correlation between predictions from the trees. ### 3.2.2 Bagging can smooth predictions CART, Bagging, and Random Forest Figure 3: Bagging in 2 dimensions (Years and Hits) Figure 4: Average of bootstrap predictions # 4 Random Forest ### 4.1 Random Forest Random Forest is a modification of bagging that attempts to build *de-correlated trees* by considering a restricted set of features for splitting. Algorithm 15.1 Random Forest for Regression or Classification. - 1. For b = 1 to B: - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data. - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached. - i. Select m variables at random from the p variables. - ii. Pick the best variable/split-point among the m. - iii. Split the node into two daughter nodes. - 2. Output the ensemble of trees $\{T_b\}_1^B$. To make a prediction at a new point x: Regression: $$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$. Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x)=majority\ vote\ \{\hat{C}_b(x)\}_1^B$. • Note: I recommend aggregating the probabilities for classification trees instead of majority vote. ### 4.1.1 Illustration of Restricted Set of Features for Splitting | CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 | | | | | | | | | | | |---|---------|----------|-----|-----|-------|--------|----------|----------|----------|----------| | CHits 457.5 93 107 229.0 819.9 5299313 24273274 29572587 17374148 CAtBat 1779.5 95 105 236.8 824.0 5574003 24175441 29749444 17197291 CRuns 288.0 109 91 277.7 865.4 7452616 22368698 29821314 17125421 CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333 CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 | var | split.pt | n.L | n.R | est.L | est.R | SSE.L | SSE.R | SSE | gain | | CAtBat 1779.5 95 105 236.8 824.0 5574003 24175441 29749444 17197291 CRuns 288.0 109 91 277.7 865.4 7452616 22368698 29821314 17125421 CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333 CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 | CRBI | 307.5 | 118 | 82 | 290.5 | 911.5 | 8010622 | 20282448 | 28293070 | 18653665 | | CRuns 288.0 109 91 277.7 865.4 7452616 22368698 29821314 17125421 CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333 CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 | CHits | 457.5 | 93 | 107 | 229.0 | 819.9 | 5299313 | 24273274 | 29572587 | 17374148 | | CWalks 157.5 90 110 246.6 789.3 6768757 25600645 32369403 14577333 CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 <t< td=""><td>CAtBat</td><td>1779.5</td><td>95</td><td>105</td><td>236.8</td><td>824.0</td><td>5574003</td><td>24175441</td><td>29749444</td><td>17197291</td></t<> | CAtBat | 1779.5 | 95 | 105 | 236.8 | 824.0 | 5574003 | 24175441 | 29749444 | 17197291 | | CHmRun 101.5 156 44 409.9 1024.6 21520628 12459474 33980101 12966634 Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 | CRuns | 288.0 | 109 | 91 | 277.7 | 865.4 | 7452616 | 22368698 | 29821314 | 17125421 | | Hits 122.5 123 77 353.4 851.4 11979104 23225406 35204510 11742225 Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 <t< td=""><td>CWalks</td><td>157.5</td><td>90</td><td>110</td><td>246.6</td><td>789.3</td><td>6768757</td><td>25600645</td><td>32369403</td><td>14577333</td></t<> | CWalks | 157.5 | 90 | 110 | 246.6 | 789.3 | 6768757 | 25600645 | 32369403 | 14577333 | | Years 4.5 69 131 219.5 716.6 5807172 29967467 35774639 11172096 RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | CHmRun | 101.5 | 156 | 44 | 409.9 | 1024.6 | 21520628 | 12459474 | 33980101 | 12966634 | | RBI 69.5 147 53 406.0 931.1 18079731 18126052 36205783 10740952 Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | Hits | 122.5 | 123 | 77 | 353.4 | 851.4 | 11979104 | 23225406 | 35204510 | 11742225 | | Walks 61.5 155 45 424.4 961.0 19360871 17541643 36902514 10044222 AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | Years | 4.5 | 69 | 131 | 219.5 | 716.6 | 5807172 | 29967467 | 35774639 | 11172096 | | AtBat 473.5 124 76 372.1 827.4 13829528 23351912 37181440 9765295 Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | RBI | 69.5 | 147 | 53 | 406.0 |
931.1 | 18079731 | 18126052 | 36205783 | 10740952 | | Runs 59.5 115 85 361.0 794.2 11945002 25829983 37774985 9171750 HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | Walks | 61.5 | 155 | 45 | 424.4 | 961.0 | 19360871 | 17541643 | 36902514 | 10044222 | | HmRun 8.5 94 106 357.6 711.4 12526389 28182028 40708417 6238318 PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | AtBat | 473.5 | 124 | 76 | 372.1 | 827.4 | 13829528 | 23351912 | 37181440 | 9765295 | | PutOuts 809.0 186 14 502.1 1116.7 35199872 6828501 42028373 4918362 Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | Runs | 59.5 | 115 | 85 | 361.0 | 794.2 | 11945002 | 25829983 | 37774985 | 9171750 | | Errors 4.5 71 129 433.5 606.5 7733767 37842076 45575843 1370892 | HmRun | 8.5 | 94 | 106 | 357.6 | 711.4 | 12526389 | 28182028 | 40708417 | 6238318 | | | PutOuts | 809.0 | 186 | 14 | 502.1 | 1116.7 | 35199872 | 6828501 | 42028373 | 4918362 | | Assists 60.5 111 89 483.4 622.1 20984841 25011176 45996017 950719 | Errors | 4.5 | 71 | 129 | 433.5 | 606.5 | 7733767 | 37842076 | 45575843 | 1370892 | | | Assists | 60.5 | 111 | 89 | 483.4 | 622.1 | 20984841 | 25011176 | 45996017 | 950719 | | var | split.pt | n.L | n.R | est.L | est.R | SSE.L | SSE.R | SSE | gain | |---------------|----------|-----|-----|-------|-------|---------|---------|---------|---------| | CAtBat | 1296.5 | 70 | 48 | 175.7 | 458.0 | 4142792 | 1599385 | 5742177 | 2268445 | | CHits | 357.0 | 77 | 41 | 192.2 | 475.1 | 4385523 | 1484232 | 5869754 | 2140868 | | CRuns | 153.0 | 68 | 50 | 178.9 | 442.3 | 4202620 | 1808176 | 6010797 | 1999825 | | CRBI | 140.0 | 73 | 45 | 194.9 | 445.6 | 4612088 | 1648340 | 6260429 | 1750193 | | CWalks | 111.0 | 74 | 44 | 197.9 | 446.2 | 4682658 | 1626914 | 6309572 | 1701050 | | CHmRun | 25.5 | 73 | 45 | 209.4 | 422.1 | 4950482 | 1800792 | 6751274 | 1259349 | | Years | 3.5 | 48 | 70 | 168.0 | 374.6 | 4065840 | 2729314 | 6795153 | 1215469 | | AtBat | 323.5 | 50 | 68 | 222.3 | 340.7 | 4391102 | 3215583 | 7606685 | 403937 | | RBI | 43.5 | 64 | 54 | 236.8 | 354.2 | 5514802 | 2092255 | 7607057 | 403565 | | Hits | 153.0 | 105 | 13 | 271.9 | 440.8 | 7158659 | 522192 | 7680851 | 329771 | | Runs | 56.5 | 77 | 41 | 255.4 | 356.5 | 5887826 | 1849136 | 7736962 | 273661 | | Errors | 2.5 | 17 | 101 | 179.9 | 309.2 | 172699 | 7594684 | 7767383 | 243239 | | Assists | 216.5 | 90 | 28 | 265.8 | 369.9 | 3189715 | 4589431 | 7779145 | 231477 | | PutOuts | 508.0 | 107 | 11 | 276.7 | 425.3 | 7138760 | 651614 | 7790374 | 220248 | | HmRun | 12.5 | 84 | 34 | 265.3 | 352.8 | 6395242 | 1429943 | 7825185 | 185437 | | Walks | 61.5 | 103 | 15 | 278.9 | 370.7 | 7018267 | 881993 | 7900261 | 110361 | #### 4.1.2 Correlation These are the pairwise correlation between predictions from the trees. ### 4.2 Random Forest Tuning There are two primary tuning parameters for Random Forest: - 1. Variety: *mtry* controls the number of predictors that are evaluated for each split (this is named max_features scikit-learn) - 2. Complexity: The depth/size of the trees are controlled by setting the *minimum number of observations* in the leaf nodes (min.obs) or the depth of the tree or the number of leaf nodes ## **Your Turn #2** How do these tuning parameters relate to the bias/variance trade-off? - The tuning parameters can be determined from cross-validation or OOB error - In randomForest and ranger packages: - For classification, the default value is $mtry = |\sqrt{p}|$ and min.obs = 1. - For regression, the default value is mtry = |p/3| and min.obs = 5. - The *number of trees* is another tuning parameter, but want this to be as large as possible (subject to computational and memory constraints) - See This stats.stackexchange answer for further explanation. #### 4.3 OOB error For each observation (x_i, y_i) , construct its OOB prediction by averaging only those trees corresponding to bootstrap samples in which observation i did not appear. $$\hat{f}(x_i) = \frac{1}{N_B(i)} \sum_{b=1}^{B} \mathbb{1}(x_i \in OOB(b)) \cdot T(\mathbf{x}_i; \hat{\theta}_b)$$ where $N_B(i)$ is the number of trees with observation i out-of-bag. - Recall that there is a 37% chance that any observation is out-of-bag in any bootstrap sample. - Thus, $N_B(i) \approx 0.37B$ (the number of trees used to estimate the OOB error is about 37% of the total number of trees in the forest). - More encouragement to use *many* trees in the forest Figure 15.4 in ESL # 4.4 Variable Importance At each split in each tree, the improvement in the split-criterion is the importance measure attributed to the splitting variable, and is accumulated over all the trees in the forest separately for each variable. The importance of predictor j in a single tree T: $$\mathcal{I}_j(T) = \sum_t \mathrm{gain}(t) \cdot \mathbb{1}(\mathrm{split}\ t \ \mathrm{uses}\ \mathrm{feature} j)$$ That is, the importance of feature j in tree T is the total gain from all splits involving feature j. In the equation, the sum is over all splits t in tree T. The importance of predictor j in a forest is the average importance from all trees in the forest: $$\mathcal{I}_j = \frac{1}{B} \sum_{b=1}^{B} \mathcal{I}_j(T_b)$$ - Note: a final normalizing step may transform importance scores to sum to 1 - There are other ways to measure feature importance, like permutation. ### 4.5 Random Forest and k-NN Random Forests (especially with almost fully grown trees) are similar to k-NN methods, but they adaptively determines the neighbors instead of needing to pre-specify a distance metric. Training Error: 0.000 Test Error: 0.238 Bayes Error: 0.210 FIGURE 15.11. Random forests versus 3-NN on the mixture data. The axis-oriented nature of the individual trees in a random forest lead to decision regions with an axis-oriented flavor. ### 4.6 Random Forests in R - randomForest - ranger - randomForestSRC - Rborist - party - aorsf Oblique Random Forests - tidymodels https://parsnip.tidymodels.org/reference/rand_forest.html