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1 Shrinkage and Penalized Regression Intro

1.1 Transplant Center Performance
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In 2019, there were 507 pediatric heart transplants performed in the US. The overall 1-year survival rate was
92.1% (467).

These transplants were performed at 59 different transplant centers. The highest survival center had 100.0%
survival (27/27). The center with lowest survival had 33.3% survival (1/3).

What is your estimate for both centers’ 2020 survival rate?

1.1.1 Laplace (Additive) Smoothing

If we used the empirical proportions (i.e., maximum likelihood point estimates), we would predict 2020
survival as p = 1.000 for the best center and p = 0.333 for the worst.

Ignoring the potential of trending performance, regression to the mean suggests that our best and worst
performers will probably have closer to the overall survival rate.
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Laplace Smoothing

1.2 Data
1.2.1 Prostate Cancer Data

The Elements of Statistical Learning (ESL) text has a description of a prostate cancer dataset used in a study
by Stamey et al. (1989). They examined the correlation between the level of prostate-specific antigen and a
number of clinical measures in men who were about to receive a radical prostatectomy.

The variables are:

* log cancer volume (1cavol)

* log prostate weight (lweight)

* age

* log of the amount of benign prostatic hyperplasia (1bph)

¢ seminal vesicle invasion (svi)

* log of capsular penetration (1cp)

* Gleason score (gleason)

* percent of Gleason scores 4 or 5 (pgg45)

* outcome variable is the log of prostate-specific antigen, (1psa)
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1.2.2 Advertising Data

The Introduction to Statistical Learning (ISL) text has some data on advertising.

These data give the sales of a product (in thousands of units) under advertising budgets (in thousands of
dollars) of TV, radio, and newspaper.

The goal is to predict sales for a given TV, radio, and newspaper budget.
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1.3 Linear Regression (OLS)

The standard generic form for a linear regression model is

Y = 8o+ 81 X1+ o Xo+ ..., +6p X, + €

* Y is the response or dependent variable
* X1, Xo,..., X, are called the p explanatory, independent, or predictor variables

100

200

300
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* the greek letter € (epsilon) is the random noise variable

* For example:

sales = Bp + 1 x (TV) + B2 x (radio) + B3 x (newspaper) -+ noise

Training data is used to estimate the model parameters or coefficients.

T11
Z21

Tnl

Producing the predictive model:

T12
Z22

Tn2

T1p Y1
T2p | Y2
LTnp | Yn,

gj(a:l,xg,...,xp) = B() +le1 + 32332 + .. .,+3pxp

* where Bj are the weights assigned to each variable

* these weights are the values that minimize the residual sum of squares (RSS) for predicting the training

data

* For example:

sales = 2.939 + 0.046 x (TV) 4+ 0.189 x (radio) x —0.001 x (newspaper)

* The complexity of an OLS regression model is the number of estimated parameters

— E.g., p+ 1 (using the notation above), where the +1 is added for the intercept.

1.3.1 Estimation

» The weights/coefficients (/3) are the model parameters

* OLS uses the weights/coefficients that minimize the RSS loss function over the training data

A

[ = argmin RSS(p)

B

Note: [ is a vector

= arggnin Z(yz — f(xi;8))?
i=1

n
= arggnin Z(yi — Bo — Brzi1 — Bawia + . .. + Bprip)?
i-1

OLS equivalently minimizes the MSE since MSE = RSS/n.
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1.3.1.1 Matrix notation

#-— Fit OLS
prostate_1lm = Im(lpsa~.,
prostate_lm %>% broom: :tidy ()

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#

1
2
3
4
5
6
#

A tibble: 9 x 5

X =

ORSS(B)

f(x;8)=x"8
1 X1 X2 Xi3 ... le
1 X5 Xoo Xog ... Xgp
C : : ) : p=
1 Xo1 Xoz Xoz ... Xnp

RSS(8) = (Y — X8)T(Y - X8)

op

=2XT(Y - Xp)

— XY =XTXp

=

B=(X"X)"'XTY

data=prostate_train)

term estimate std.error statistic
<chr> <dbl> <dbl> <dbl>
(Intercept) 0.429 1.55 0.276
lcavol 0.577 0.107 5.37
Ilweight 0.614 0.223 2.75
age -0.0190 0.0136 -1.40
1bph 0.145 0.0705 2.06
svi 0.737 0.299 2.47

i 3 more rows

1.3.1.2 OLS in R with 1m ()

SO OO O O OO

1.4 Some Problems with least squares estimates

p.value
<dbl>

. 783
.00000147
.00792
.168
.0443
.0165

Bo
f1

5,

There are a few problems with using least squares estimation (OLS) to estimate the regression parameters
(coefficients)

Prediction Accuracy

— the least squares estimates in high dimensional data may have low bias but can suffer from large

variance.

— Prediction accuracy can sometimes be improved by shrinking or setting some coefficients to zero.
— By doing so we sacrifice a little bit of bias to reduce the variance of the predicted values, and

hence may improve the overall prediction accuracy.
— Some predictors may not have any predictive value and only increase noise

* Interpretation: With a large number of predictors, we often would like to determine a smaller subset
that exhibit the strongest effects. In order to get the “big picture”, we are willing to sacrifice some of

the small details

— When p > n least squares won’t work (no unique solution)
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1.5 Improving Least squares

We will examine 3 standard approaches to improve on least squares estimates

1. Subset Selection
* Only use a subset of predictors, but estimate with OLS

» Examples: best subsets, forward step-wise
2. Shrinkage/Penalized/Regularized Regression
* Instead of an “all or nothing” approach, shrinkage methods force the coefficients closer toward 0.
» Examples: ridge, lasso, elastic net
3. Dimension Reduction with Derived Inputs
* Use a subset of linearly transformed predictors
* Examples: PCA, PLS

All three approaches introduce additional bias in order to reduce variance and hopefully improve prediction.
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2 Subset Selection

Subset selection methods attempt to find the best subset of predictors to use in the model

* Best Subsets finds the best combination of & < p predictors
— k is the tuning parameter
» Stepwise Selectors takes a greedy approach by sequentially adding (forward) or deleting (backward)
the predictor that most improves the fit
— This is a computational necessity for high dimensional data
— Tuning parameter options:
a. Number of predictors (k)
b. Inclusion/Exclusion criteria: AIC/BIC, adjusted R"2, p-values, etc.

Best Subsets (Prostate Data)

train test

1.4

1.2 1

1.0 1

MSE

0.8 1

Subset selection methods remove predictors by setting their coefficients to O (e.g., B =0)

* These “all or nothing” approaches can be very unstable. A small change in the data can completely
change the model
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predictor Im best_subset bootstrap
(Intercept) 0.43 -1.05 -0.33
Icavol 0.58 0.63 0.51
lweight 0.61 0.74 0.54
age -0.02 0.00 0.00
Ibph 0.14 0.00 0.14
svi 0.74 0.00 0.67
lcp -0.21 0.00 0.00
gleason -0.03 0.00 0.00
pggds 0.01 0.00 0.00

3 Shrinkage Methods

Instead of an “all or nothing” approach, shrinkage methods force the coefficients closer toward 0.

* This can be accomplished through penalized regression where a penalty is imposed on the size of the
coefficients
* Equivalently, the size of the coefficients are constrained not to exceed a threshold

Essentially, instead of estimating the model parameters with OLS, they are estimated with a penalized or
constrained optimization.

Penalized Estimation

* Unpenalized methods estimate the model parameters by minimizing the training loss/error.

B = argmin Loss(f)
B

* Penalized methods introduce a complexity penalty and estimate the model parameters by minimizing the
training loss/error plus the penalty.

Bpen = argmin Loss(3) 4+ APenalty(3)
B

where ) is a tuning parameter that allows the trade-off between minimizing the training loss and minimiz-
ing the complexity penalty.

* This is equivalent to the constrained optimization problems:
Bpen = argmin Loss(f3) subject to Penalty(5) < t;
B

= argmin Penalty(53) subject to Loss(3) < to
B

for a particular choice of A, ¢, to.
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3.1 Two Representations

The penalized optimization (Lagrangian form)
b= arg min {1(5) + AP(8)}

An equivalent representation is (constrained optimization)

B = arg min [(/3) subjectto P(B) <t
B

= argmin [(J)
B: P(B)<t

where

* [(p) is the loss function (e.g. mean squared error, negative log-likelihood)
* P([) is the penalty term (as a function of the model parameters)

* X > 01is the strength of the penalty

* t is the penalty budget
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3.2 Penalties

Examples penalties:

* Ridge Penalty

* Lasso Penalty

¢ Best Subsets

p p
PB) =>_18i1° = > 15,20
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B2
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4 Ridge Regression

For ridge regression

2
n p
1(B) = %Z (yz — Bo — Zl‘wﬁj) = MSE
; =

P(p) = Z 15; 2 (Notice that the intercept, (3, is not penalized)

Watch for how software defines the loss. Some use MSE, others use SSE = n*MSE.
E.g., if loss is RSS = SSE = n*MSE, then P(3) is a function of the sample size n!

So the ridge solution becomes:
2
Aridge . 1 = u P 2
B :al"ggnln EZ vi —Bo— > _xiiBi | +AD_ 155l
j=1 J=1

i=1

P
= argmin MSE(8) + A Z ‘Bj‘Q
5 pu

2
n p p
= arggnin Z (yz‘ — Bo — Z%’jﬁj) + ”/\Z 1851

i=1 j=1 j=1

P
= argmin RSS(5) + n)\z |6j‘2
B j=1

Your Turn #2 : Ridge Regression

1. What happens when A = 0?
2. What happens when A 1 0co?
3. Why is it important to scale the predictor variables?

4.1 Scaling

Because the penalty is based on the magnitude of the coefficients, it is important to scale the predictors so
they are all treated equally.

* This is important because predictors on different scales will be penalized with different strengths.
* The type of scaling that allows equal treatment is to divide each predictor by its standard deviation.

— The resulting predictors should have the property: x]ij =c, Vj.
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Consider the advertising data:

Im(sales ~ TV + radio + newspaper,

broom: :tidy ()

data=advert) %>%

term estimate std.error statistic p.value
(Intercept) 2.939 0.312 9.422 0.00
TV 0.046 0.001  32.809 0.00
radio 0.189 0.009 21.893 0.00
newspaper -0.001 0.006 -0.177 0.86

* While the raw magnitude of radio > TV, the t-statistic (estimate/std.error) shows that TV has a
stronger effect. This is because radio has a larger standard error.

* Look at what happens if we transform newspaper spending into thousands of dollars

Im(sales ~ TV + radio + I (newspaper/1000),

broom: :tidy ()

data=advert) %>%

term estimate std.error statistic p.value
(Intercept) 2.939 0.312 9.422 0.00
TV 0.046 0.001  32.809 0.00
radio 0.189 0.009 21.893 0.00
I(newspaper/1000) -1.037 5.871  -0.177 0.86

- the coefficient of newspaper now has the largest magnitude! - However we see that the t-statistic (and

p-values) haven’t changed

* Let’s divide each predictor by its standard deviation

advert %>% summarize (across (everything(),
#> # A tibble:

1 x 4

#> TV radio newspaper sales
#> <dbl> <dbl> <dbl> <dbl>
#> 1 85.9 14.8 21.8 5.22
advert %>%
mutate_at (vars (-sales), ~.x/sd(.x))
#> # A tibble: 200 x 4
#> TV radio newspaper sales
#> <dbl> <dbl> <dbl> <dbl>
#> 1 2.68 2.55 3.18 22.1
#> 2 0.518 2.65 2.07 10.4
#> 3 0.200 3.09 3.18 9.3
#> 4 1.76 2.78 2.69 18.5
#> 5 2.11 0.727 2.68 12.9
#> 6 0.101 3.29 3.44 7.2
#> # 1 194 more rows
advert %>%
mutate_ at (vars (—-sales), ~.x/sd(.x)) %>%

Ilm(sales ~ TV + radio + newspaper, data=.) %>%
broom: :tidy ()

~sd (.x)))

* Notice that the scaled coefficients are original x std.dev.

# standard deviation
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term estimate std.error statistic p.value
(Intercept) 2.939 0.312 9.422 0.00
TV 3.929 0.120  32.809 0.00
radio 2.799 0.128  21.893 0.00

newspaper -0.023 0.128  -0.177 0.86

term original std.dev scaled
(Intercept) 2.939 NA 2939
TV 0.046  85.85 3.929
radio 0.189  14.85 2.799

newspaper  -0.001 21.78 -0.023

* While this type of transformation on unpenalized models won’t impact predictions, it will have a large
effect on penalized models.

* Check the description of the implementation for penalized regression models. Most will properly scale the
data for you behind the scenes. But if not, then you should do so first.

* InR, the scale () function can both center and scale the predictors. Centering is perfectly fine as it only
impacts the intercept term which isn’t penalized.

Other Transformations

There are other types of transformations that re-scale the predictors.

1. Power transformations (e.g., Box-Cox)
2. Rank/Quantile scaling. Convert each value to its associated quantile or rank. E.g., the smallest value gets

scored 1 and largest value gets scored n. Implicitly used by predictions trees.

max—zx
max—min

3. Range scaling. E.g., 2’ = to force between [0, 1].

These could all be used, but the statistical scaling (standard deviation) is the most common. But use whichever
approach gives the best predictions!

NB: Ensure all transformations are done on the training data and applied to the test data, else data leakage will
occur.

4.2 Estimation
* Ridge regression has two types of parameters that need to be estimated

1. Model parameters: 3 € RPH!
2. Tuning parameter: A > 0

* The tuning parameter A controls the model complexity and effective degrees of freedom (edf).

* Given a specific value of A, the model parameters (3 are easy to estimate as we show below.

The optimization function can be written:
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B = argmin £(B) + AP(B)
B

= argmin J(8;\)
B

where
J(B)=(y—XB)T(y —XB)+ A3

And the solution must satisfy

0J(8) _ 9B) OP(B)

o5 Bl o8 0

For ridge regression, this becomes

Ridge Regression Solution

Resources

The Matrix Cookbook has some common matrix and vector derivative expressions.

4.3 Ridge Regression Properties
A -1
B;\ldge _ (XTX + )\Ip) XTY

* Ridge regression always works, even when X is not full rank because XX + A, is always invertible
for A >0

* Ridge tends to shrink correlated predictors together.

s For0 < A\ < 202/ > | ﬁj|2, ridge regression has a lower mean square prediction error than least
squares (Theobald 1974)!


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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* (Quasi) Bayesian Interpretation: If 5 ~ N (0, TQIp) is the prior distribution, and 7 and the standard
deviation ¢ are assumed known, then the posterior mode (and hence mean since Gaussian) of 3, given
the data, is

2 —1
E[8|D] = (XTX + ‘;Ip> XY

which is equivalent to using A\ = o2 /72.
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4.4 Solution Paths
Ridge Regression introduces a set of models indexed by A
« X\ =0 gives g8
s A=oogives ;=0 j=1,...,p
* As A goes up, variance decreases and bias increases.
It can be illustrative to plot the coefficient path against:
a. Aorlog(\)
3 —_\P 3 2
b. P(/Bj()‘)) = 2.j=1 |5j()‘)‘
c. df(\) (effective degrees of freedom)
d. P(5;(X))/P(Bj(A = 0)) (ratio of ridge penalty to penalty at OLS solution)
0.75 ol 0.75
§ 0.50 1 § 0.50 1
N N
B B2
] L e—— < )
B 0.25 JH B 0.251
g 8
D) = ) e
g 0004y 7\ | @ 0001 /Y
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o o
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0.75 0.75 term
=) =) age
g 0501 g 0501 — gleason
§ 0.25 E 0.25 oo
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< < Pgg4s
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Training MSE

4.5 Effective Degrees of Freedom (edf)

The tuning parameter for a ridge regression model is the \ that controls the strength of penalty

. p
Btee = arg min MSE(5) + A > 15
j=1
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« A =0 gives g8
s A=oogives ;=0 j=1,...,p
* As )\ goes up, variance decreases and bias increases.

The effective degrees of freedom, df(\) is the trace of the hat matrix, H)

EDOF Calculation

4.6 Tuning Parameter Selection

How about AIC/BIC or resampling?



Penalized Regression

Ridge, Lasso, ElasticNet DS 6410 | Spring 2025 21/37
L
8 1 ._,..““..'..
L 6 %,
&) "0..
W, %0
N -“\
5 5 4 5 % 41 0 1 3 5 2 % & 7
log(lambda)
20 g’
o*®
O 01 .o'..
< ...o’
_20- I’.
_40-I— 1 1 1 1
-5.0 -25 0.0 2.5 5.0
log(lambda)
404 M..w...
o*® o
20 o*
O .o..
m oo
0- o°
_20-_g.g.=—-./”.. . :
-5.0 -25 0.0 2.5 5.0
log(lambda)
10-fold CV
1.75
1.50 1 bo
W 1.25
n
= 1.00
0.75 1
OISO-I 1 1 1 1 1 1 1 1 1 1 1 1 1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
log(lambda)
Test Performance
1.75 ; -
1.50 1 : :
W 1.254 : :
n : :
S 1.00 : :
0.751 —_—//'
0.50 ceesese sese

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
log(lambda)



Penalized Regression
Ridge, Lasso, ElasticNet DS 6410 | Spring 2025 22/37

5 Lasso

5.1 The Lasso

For lasso regression

=1

2
n p
1B) =Y (yi —Bo— injﬁj)
j=1
P
P(p) = Z |55 (Notice that [ is not penalized)
j=1

The lasso solution becomes:

2
n p p
ﬁndge = argﬁmin Z (yi — ,30 — meﬂj) + A Z |,3]|
j=1 j=1

i=1
Why is it important to scale the predictor variables?

5.1.1 Lasso Penalty

* By using a L; penalty, lasso penalty can shrink some coefficients all the way to O (unlike the ridge
penalty)

* This effectively removes predictors from the model (like the stepwise procedures), but in a type of
continuous fashion

* Lasso stands for “Least Absolute Shrinkage and Selection Operator”

Lasso Constraint: |B1]+|B2| <1

2.0

A
15 'Bols

loss

1.0

B2

0.5

0.0

-0.5

-1.0
-1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5

By
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5.1.2 Example of 1D Lasso Selection
Suppose the simplified setting of fitting a loss function of () = %(1 - B)2

* This loss is the squared deviation from 1.
* The lasso penalty is |3].
* The objective function is [(3) + A|S]

A=1
2.0 20 |1 — Lasso
—— Ridge
1.5 + 1.5 +
P
©
" z g
& 1.0 c 1.0 - a
- o) +
o @
o
-
0.5 0.5 H
0.0 0.0
T 1T T T T 1 T 1T T T T 1
-1.0 0.0 1.0 2.0 -1.0 0.0 1.0 2.0
beta beta beta

5.2 Comparing Lasso and Ridge Regression

Prostate Cancer Data from ESL book: Figs 3.8, 3.10 and Table 3.3
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L1 norm: sum of absolute betas L2 norm: sum of squared betas
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MSE vs. EDF (not including intercept)

14 - ° o lasso
' — ridge
1.2

E

= 1.0

8

Py

£
0.8 —
0.6
0.4 T T T T T

0 2 4 6 8
edf

5.2.1 Example with Strong Correlation

Consider a problem with strong multicollinearity:

#-— Generate Data

set .seed (10)

n = 125

x1l = rnorm(n)

x2 = rnorm(n, mean=x1, sd=.01)

cor (x1,x2) # strong correlation

#> [1] 0.9999

y = rnorm(n, mean=1+1*x1+2%x2, sd=2) # f(x) =1 + 1x 1 +2x 2

#-— Pairs Plot
pairs (cbind(x1, x2, vy))
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o 2
g (Intercept)
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4.

-12 -8 -4 0 4

log(lambda)
predictor  true ols ridge lasso
(Intercept) 1 138 136 1.37
x1 1 -330 158 3.15
x2 2 657 157 0.11

Ridge and Lasso using A, from cross-validation.

* Notice that the OLS coefficients have negative signs and large magnitude but a small constraint (penalty)
produces a much closer result.
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* That is, a small ridge or lasso penalty controlled the high variance.
* Ridge tends to shrink correlated predictors together

¢ Lasso tends to choose one and set other(s) to zero.

5.3 Effective Number of Parameters for Lasso

* Unlike ridge regression, the lasso is not a linear smoother. There is no way to write y = Hy.
* Thus, estimating the effective degrees of freedom is not based on trace of hat matrix.
* It turns out that the number of non-zero coefficients is a decent approximation of the effective number
of parameters
* We can use this value (df = 37, 1(|3;| > 0)) in AIC/BIC/GCV for selecting A
— Note: the df is not continuous in A, so the min SSE model would have smallest A within the set
withdf =k

5.4 Relaxed Lasso

The relaxed lasso is basically an approach to use lasso for variable selection. The approach is as follows:
1. Use resampling (or other good method) to select A (using a lasso model).
2. Find the non-zero coefficients and select only those predictors to be in the model.
3. Fit an unpenalized (e.g., OLS) model using the selected features.

4. (Optionally) combine the predictions from the optimal lasso and unpenalized models

This attempts to use the lasso variable selection to reduce variance, but unpenalized estimation to reduce bias
in the model parameters.

The relax argument of glmnet () and cv.glmnet () provide a convenient implementation. Note that
in prediction, the « argument allows a balance between the penalized and unpenalized fits.
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5.5 [Elastic Net

The Elastic Net Penalty can help with selection (like lasso) and shrinks together correlated predictors (like
ridge).

Il
M=

P(3, ) ozﬁ]z—i- (1—a)|py] Eq 3.54 on pg 73 of ESL

<
Il
—_

(1-a)
2

M

PB,a) = sz + | ;] glmnet R package

<
Il
-

5.5.1 Comparing Elastic Net to Lasso and Ridge

Elastic Net with o = 0.5
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@ —
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@]
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o
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o‘ —
|
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0.0 0.5 1.0 1.5 2.0
L1 Norm

5.5.2 Elastic Net Tuning

Notice that elastic net models have two funing parameters: « € [0, 1] controls the type of penalty (a = 0 for ridge,
« = 1 for lasso) and A > 0 controls the strength of penalty.

While cv.glmnet () provides a fast implementation to estimate A, there is not a shortcut that I know of for evaluating
a. A basic loop over a grid of « values will work.
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There are few ways to jointly optimize «v and A.

DS 6410 | Spring 2025

optimize.

2. Use one resampling pass to estimate «, then another to estimate A given &.

1. Create a grid of a and A values and fit models for every value. The problem is that the algorithm in
glmnet () is optimized to search over a sequence of \ values in one pass. Also, due to the different
penalties a reasonable A sequence for a lasso penalty may not be reasonable for ridge penalty.

3. The choice of o > 0 may not be very influential on performance, so may not have much practical need to

5.6 Cross-Validation and Penalized Regression
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5.7 Categorical Predictors in Penalized Regression
1. How does lasso/ridge treat categorical predictors?

2. How does lasso/ridge treat interaction terms?

3. How does lasso/ridge treat basis expansions of a single variable, e.g. polynomial?

5.8 Group Lasso

* L groups of predictors

— categorical variable with 3 levels will be in a group of 3 predictors

* Let X; be n x p; matrix of group [ predictors
e [3;is p; x 1 group coefficients

J(B) = €(B) + AP(B,})

2

L
(pB) = HY — Bol =X
=1

2

L
P(B,A) = voilBilly
=1

6 Appendix

6.1 More Resources

* glmnet tutorial
* broom tutorial

— Using broom with glmnet
* ISLR Lab 6.5.2

6.2 Required R Packages
We will be using the R packages of:

* glmnet for ridge, lasso, and elasticnet regression

* broom for obtaining tidy model outputs

* tidyverse for data manipulation and visualization
* tidymodels for predictive modeling

library (glmnet)
library (broom)
library (tidymodels)
library (tidyverse)


https://glmnet.stanford.edu/articles/glmnet.html
https://broom.tidymodels.org/index.html
https://broom.tidymodels.org/reference/tidy.glmnet.html
https://www.statlearning.com/
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6.3 Summary of glmnet package
1. The Introduction to glmnet has many useful details.
2. The glmnet () function fits a penalized regression to single data

a. Need to pass in a numeric matrix of predictor values (x= argument). It won’t work with data
frames nor formulas.
b. alpha= specifies the type of penalty. alpha=0 for ridge regression, alpha=1 for lasso
regression, and 0 < « < 1 for elastic net.
c. The family= argument specifies the loss function.
e family = "gaussian" uses MSE/2 (half the MSE) for loss function
* family = "binomial" uses the mean log-loss
d. Normally, you won’t need to set the lambda path manually but if you have a particular lambda
sequence you want to use, pass it into lambda= argument.
* Note: remember, you set the lambda value when predicting

e. The fitted coefficients can be obtained with EA = coef (object, s=...), where s is the
lambda value
f. Use predict (ocbject, newx = ..., s = ...) where s is the lambda value and

newx is the numeric matrix of the testing data

g. glmnet () will automatically scale the predictor variables before fitting and then transform the
output back to the original units, so you do not need to do any of the scaling yourself. However
it’s fine to do so.

3. The cv.glmnet () function implements k-fold cross-validation.

a. Behind the scenes, it first runs glmnet () on all the data which makes the lambda path and
estimates coefficients (for the final model).
b. Then in loops over the folds and returns:
* lambda is the lambda path
» cvm is the mean cross-validated performance metric. Use the t ype .measure= argument
to control what is returned
e cvsd, cvup, cvlo is the standard error and 1se values
* lambda.min and lambda.lse are lambda values that gives the minimum cvm and
largest value of lambda such that error is within 1 standard error of the minimum.

4. The makeX () function will convert a data frame to suitable numerical matrix. Its main function is to
convert factors/character vectors to one-hot encoded matrices.

5. The preferred approach is to let glmnet () create the A sequence internally. Behind the scenes,
glmnet () uses a clever algorithm that sequentially decreases A to quickly estimate the coefficients
in about the same time it takes to run OLS! This means that you should not usually set lambda during
the fitting. Instead, set the predict () argument s to use a specific A value.

glmnet lambda sequence

Notice the suggestion from the help (glmnet) concerning the 1ambda parameter:

A user supplied lambda sequence. Typical usage is to have the program compute its own lambda
sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this.
WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use
predict () instead). Supply instead a decreasing sequence of lambda values. glmnet relies on



https://glmnet.stanford.edu/articles/glmnet.html
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its warms starts for speed, and its often faster to fit a whole path than compute a single fit.

6.4 Ridge, Lasso, and ElasticNet Regression in R

We use demonstrate how to use glmnet () and cv.glmnet () using the prostate data. First load the data:
#-— Load raw data

data_url = 'https://web.stanford.edu/~hastie/ElemStatlLearn/datasets/prostate.data’
prostate = readr::read tsv(data_url, col_select=-1) # remove row numbers

Then get the model matrices using glmnet : :makeX ()

#-— Get model matrices (returns a list of 'x° and “xtest’)

X = glmnet: :makeX(
train = prostate %>% filter (train) %>% select (-lpsa, -train),
test = prostate %>% filter (!train) %>

)

oP
oP

select (-1lpsa, -train)

X_train = X$x

Y _train = prostate %>% filter (train) %>% pull (lpsa)
X_test = X$xtest
Y_test = prostate %>% filter (!train) %>% pull(lpsa)

Note that we don’t need to add a column of ones for the intercept term; glmnet () will add that for you
with the default intercept=TRUE argument.

6.4.1 Ridge Regression

Now we can fit the ridge regression (glmnet () setting alpha = 0)
ridge = glmnet (X_train, Y_train, alpha = 0) # alpha=0 specifies Ridge penalty
broom: :tidy (ridge) # predictions

#> # A tibble: 900 x 5

#> term step estimate lambda dev.ratio

#> <chr> <dbl> <dbl> <dbl> <dbl>

#> 1 (Intercept) 1 2.45 879. 3.56e-36

#> 2 (Intercept) 2 2.43 801. 5.24e- 3

#> 3 (Intercept) 3 2.43 730. 5.74e- 3

#> 4 (Intercept) 4 2.43 665. 6.30e— 3

#> 5 (Intercept) 5 2.43 606. 6.91e— 3

#> 6 (Intercept) 6 2.43 552 7.57e— 3

#> # 1 894 more rows

Helpfully, glmnet package provides a cv.glmnet () to implement k-fold cross-validation. Set nfolds
to control the number of folds.

set.seed (2021) # don't forget to set seed for the folds
ridge_cv =
cv.glmnet (X_train, Y_train,
alpha = 0, # ridge penalty
nfolds = 10) # 10-fold cross-validation

If have manually created folds (useful if we are comparing performance of multiple models), used the
foldid= argument

#: Manually create folds

set.seed (2021) # don't forget to set seed for the folds

folds = rep(1:10, length=nrow(X_train)) %>% sample ()

ridge_cv =
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cv.glmnet (X_train, Y_train,
alpha = 0, # ridge penalty
foldid = folds) # use existing folds

We can get the performance over lambda using the broom: : tidy () function

broom: :tidy (ridge_cv)
#> # A tibble: 100 x 6

#> lambda estimate std.error conf.low conf.high nzero
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 879. 1.50 0.218 1.29 1.72 8
#> 2 801. 1.50 0.218 1.28 1.72 8
#> 3 730. 1.50 0.217 1.28 1.71 8
#> 4 665. 1.50 0.217 1.28 1.71 8
#> 5 606. 1.50 0.217 1.28 1.71 8
#> 6 552. 1.49 0.217 1.28 1.71 8
#> # 1 94 more rows

Plot CV performance (function of log A)

with(ridge_cv, tibble (lambda, cvm, cvsd, cvup, cvlo)) %>%
ggplot (aes (log(lambda), cvm)) +
geom_pointrange (aes (ymin=cvlo, ymax=cvup))

1.75 1

1.50

1.25+

cvm

1.00

0.754

0.50

-2.5 0.0 2.5 5.0
log(lambda)

And we have the optimal values of lambda (average mse)

ridge_cv$lambda.min # best lambda

#> [1] 0.08789

ridge_cv$lambda.lse # best lambda within one se of optimal
#> [1] 0.9873

Notice from the help that cv.glmnet () fits nfolds+1 models; the extra fit using the entire training data.
The nfolds fits are used to estimate the tuning parameter A\ and then, for convenience, a final model is
produced using all the available data. This allows you to get coefficients or make predictions without having
to call (non-cv) glmnet ().

We can get a matrix of coefficients using the coef () function:
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# coef (ridge_cv, s=ridge _cvSlambda) $%>% head # estimates for all lambda values

coef (ridge_cv, s = "lambda.min") # using lambda.min
#> 9 x 1 sparse Matrix of class "dgCMatrix"
#> sl

#> (Intercept) 0.095550

#> lcavol 0.492656

#> lweight 0.601228

#> age -0.014818

#> 1bph 0.137966

#> svi 0.679288

#> lcp -0.116653

#> gleason 0.017256

#> pgg4dh 0.007078

And make predictions on the test data:

# yvhat = predict (ridge_cv, X test, s = ridge_cvSlambda) # matrix; all lambda
vhat = predict (ridge_cv, X_test, s = "lambda.min")

mean( (Y_test - yhat) "2 ) # test MSE

#> [1] 0.4944

6.4.2 Lasso Regression

The glmnet () function with alpha = 1 implements lasso regression.

I’m going to fit several different models using cross-validation. To ensure equality in assessment, I’'m going
to set the fold structure manually and apply to all models using the foldid argument in cv.glmnet ()

#—- Get K-fold partition (so consistent to all models)

set .seed(721) # set seed for replicability

n.folds = 10 # number of folds for cross-validation
fold = sample(rep(l:n.folds, length=nrow (X_train)))

# vector of fold labels

# notice how this is different than: sample(l:K,n,replace=TRUE),

# which won't give equal group sizes

Now we can fit several models

#-— OLS

fit_1ls = lm(Y_train~X_train)

beta_ls = coef (fit_1s)

vhat_1s cbind (1, X_test) %*% coef(fit_1s)

#-— Ridge

fit_ridge = cv.glmnet (X_train, Y_train, alpha=0, foldid=fold)
beta_ridge = coef (fit_ridge, s="lambda.min")

vhat_ridge = predict (fit_ridge, newx = X_test, s="lambda.min")

#-— Lasso

fit_lasso = cv.glmnet (X_train, Y_train, alpha=1, foldid=fold)
beta_lasso = coef (fit_lasso, s="lambda.min")

vhat_lasso = predict (fit_lasso, newx = X_test, s="lambda.min")

#-—— Elastic Net

a = .8 # set alpha for elastic net
fit_enet = cv.glmnet (X_train, Y_train, alpha=a, foldid=fold)
beta_enet = coef (fit_enet, s="lambda.min")

vhat_enet = predict (fit_enet, newx = X_test, s="lambda.min")

And evaluate their performance on the test data
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# put all results in wide tibble

tibble (
y = Y_test,
ols = as.numeric (yhat_1s),

ridge = as.numeric(yhat_ridge),
lasso = as.numeric (yhat_lasso),
enet = as.numeric (yhat_enet)

) %>%

# convert to long format

pivot_longer (-y, names_to = "model", values_to = "yhat") %>%

# calculate squared error

mutate (sq_err = (y - yhat)"2) %>%

# calculate average mse (group_ by model)
summarize (.by = model,

mse = mean(sg_err),
n = n()r
se = sd(sg_err)/sqrt (n),

) %>%
arrange (mse)
#> # A tibble: 4 x 4

#> model mse n se
#> <chr> <dbl> <int> <dbl>
#> 1 enet 0.490 30 0.163
#> 2 lasso 0.491 30 0.164
#> 3 ridge 0.494 30 0.164
#> 4 ols 0.521 30 0.179

#-—— Coefficients
tibble (variable=c (" (Intercept)", colnames (X_train)),
ols = beta_ls,

ridge = beta_ridgel[,1],

lasso = beta_lassol[,1],

enet = beta_enet[,1])
variable ols ridge lasso enet
(Intercept) 0.429 0.096 0.155 0.152
Icavol 0.577 0493 0.541 0.537
lweight 0.614 0.601 0.593 0.593
age -0.019 -0.015 -0.015 -0.014
Ibph 0.145 0.138 0.134 0.134
svi 0.737 0.679 0.662 0.660
Iep -0.206 -0.117 -0.139 -0.135
gleason -0.030 0.017 0.000 0.000
pegds 0.009 0.007 0.007 0.007

6.5 Tidymodels and elastic net

Load the tidymodels package
library (tidymodels)

Here I’'ll use monte carlo cross-validation holding out 10 observations each iteration for 100 iterations..

#: make splits for Monte Carlo cross-validation
n_out = 10 # number to hold out
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set.seed (2023)
prostate_cv = prostate %>% mc_cv(prop = 1 - n_out/nrow(.), times = 100)

There is an extra t rain column in the data that I want to ignore. The recipe () won’t let you negate
variables in the formula, so I'll add a step_rm () to remove it as a predictor. The step_dummy () isn’t
needed since there are no categorical variables, but no impact to leave it in. Finally, I'm specifying an elastic
net model with & = 0.8 (using mixture=0. 8), but letting the X\ value be selected during tuning (using
penalty=tune ()).

#: specify workflow
wf_enet = workflow (

preprocessor = recipe(lpsa ~ ., data = prostate) %>%

step_rm(train) %>% # remove the “train’ column

step_dummy (all_nominal_ predictors (), one_hot = TRUE), # one-hot encoding
spec = linear_ reg(penalty = tune(), mixture = 0.8, engine = "glmnet")

)

The tune_grid () function will properly fit, predict, and evaluate. For the grid= argument, I'm letting
the function consider 1000 lambda (penalty) values and using the RMSE as performance metric.
tuning = tune_grid/(

object = wf_enet,

resamples = prostate_cv,

grid = 1000,

metrics = metric_set (rmse)

)

Here are the results for all 1000 penalty values
tuning %>%

collect_metrics () %>%

arrange (mean, -penalty)

penalty .metric .estimator  mean n std_err .config

0.0348 rmse standard 0.7313 100 0.0172 Preprocessorl_Model0855
0.0340 rmse standard ~ 0.7313 100 0.0172 Preprocessorl_Model0854
0.0335 rmse standard 0.7313 100 0.0172 Preprocessorl_Model0853
0.0360 rmse standard  0.7313 100 0.0171 Preprocessorl_Model0856
0.0328 rmse standard 0.7314 100 0.0172 Preprocessorl_Model0852
0.0323 rmse standard  0.7314 100 0.0172 Preprocessorl_Model0851

The cross-validation was used to set the lambda values. Now I will re-fit, using all the data, and examine the
model coefficients.

lambda_hat = tuning %>% select_best (metric = "rmse")
finalize_ workflow (wf_enet, lambda_hat) %>%
fit (prostate) %>% tidy ()

Looks like the 1 cp variables isn’t used in the model.

For the one-standard error rule, we can manually extract:

tuning %>%

collect_metrics () %>%
mutate (one_std_err = mean + std_err) %>%
filter (mean <= one_std_err[which.min (mean)]) %>%

slice_max (penalty)
#> # A tibble: 1 x 8
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#> penalty .metric

#> <dbl> <chr>
#> 1 0.186 rmse

0.748 100 0.0171 Preprocessorl_Mode~

Or using the built-in tidymodels function:

term estimate  penalty
(Intercept) 0.155 0.035
lcavol 0.506 0.035
lweight 0.561 0.035
age -0.011 0.035
Ibph 0.068 0.035
svi 0.602 0.035
Icp 0.000 0.035
gleason 0.012  0.035
pgg4s 0.002 0.035
.estimator mean n std _err .config
<dbl> <int> <dbl> <chr>

lambda_lse = tuning %>%
select_by one_std err (desc(penalty), metric = "rmse")
lambda_1lse

#> # A tibble: 1 x 2
#> penalty .config

#> <dbl> <chr>

#> 1 0.186 Preprocessorl_Model0928

Tidymodels and gimnet

Here are some more details about how tidymodels works with the glmnet package: https://parsnip.tidymodels.
org/reference/glmnet-details.html

One difference is that tidymodels doesn’t call cv.glmnet (), but calls glmnet () individually for each
resample. Not only does this slow things down (a bit), but leads to each model having a different lambda
sequence. While this alone isn’t a problem, when also searching over «, the tidymodels default A values may not
be best for all « values. This is why I set grid = 1000 in the call to tune_grid (), to help ensure the grid
is fine enough to not miss important A values. Hopefully in the future, the tidymodels implementation will be
smarter about providing default A sequences in calls to tune_grid ().

one_std_err
<dbl>
0.765
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