
Chapter 2
Manipulating Network Data

2.1 Introduction

We have seen that the term ‘network,’ broadly speaking, refers to a collection of ele-
ments and their inter-relations. The mathematical concept of a graph lends precision
to this notion. We will introduce the basic elements of graphs—both undirected and
directed—in Sect. 2.2 and discuss how to generate network graphs, both ‘by hand’
and from network data of various forms.

As a representation of a complex system, a graph alone (i.e., as merely a collection
of vertices and edges) is often insufficient. Rather, there may be additional informa-
tion important to the application at hand, in the form of variables that can be indexed
by the vertices (e.g., gender of members of a social network) or the edges (e.g., aver-
age time required to traverse a link in a transportation network). Alternatively, at a
coarser level of granularity, it may be convenient to associate vertices or edges with
groups (e.g., all proteins in a protein–protein interaction network that are involved
with a certain type of signaling event in a cell). Indeed, we can imagine potentially
equipping vertices and edges with several variables of interest. Doing so corresponds
to the notion of decorating a network graph, which is discussed in Sect. 2.3.

Finally, in using graphs to represent network data, a certain level of familiarity
with basic graph theoretic concepts, as well as an ability to assess certain basic
properties of graphs, is essential. We therefore devote Sect. 2.4 to a brief overview
of such concepts and properties, including a quick look at a handful of important
special classes of graphs.

For creating, decorating, and assessing basic properties of network graphs, igraph
is particularly useful.1 A library andR package for network analysis, igraph contains
a set of data types and functions for (relatively!) straightforward implementation and

1Alternatively, there is within the network and sna packages, found in the statnet suite, a similarly
rich set of tools for the manipulation and characterization of network graphs. These packages share
nontrivial overlap with igraph.

© Springer Nature Switzerland AG 2020
E. D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R!,
https://doi.org/10.1007/978-3-030-44129-6_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44129-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-44129-6_2

14 2 Manipulating Network Data

rapid prototyping of graph algorithms, and allows for the fast handling of large
graphs (e.g., on the order of millions of vertices and edges). As such, its use will
figure heavily in this and the following two chapters (i.e., where the emphasis is on
descriptive methods). The fact that igraph was developed as a research tool and that
its focus originally was to be able to handle large graphs efficiently, means that its
learning curve used to be somewhat steep. Recent versions do not necessarily flatten
the learning curve, but are nevertheless friendlier to the user, once she has mastered
the basics.

2.2 Creating Network Graphs

2.2.1 Undirected and Directed Graphs

Formally, a graph G = (V, E) is a mathematical structure consisting of a set V of
vertices (also commonly called nodes) and a set E of edges (also commonly called
links), where elements of E are unordered pairs {u, v} of distinct vertices u, v ∈ V .
The number of vertices Nv = |V | and the number of edges Ne = |E | are sometimes
called the order and size of the graph G, respectively. Often, and without loss of
generality,2 we will label the vertices simply with the integers 1, . . . , Nv, and the
edges, analogously.

In igraph there is an ‘igraph’ class for graphs.3 In this section, we will see a
number of ways to create an object of the igraph class in R, and various ways to
extract and summarize the information in that object.

For small, toy graphs, the function graph_from_literal can be used, spec-
ifying the edges in a symbolically literal manner. For example,

#2.1 1 > library(igraph)
2 > g <- graph_from_literal(1-2, 1-3, 2-3, 2-4, 3-5, 4-5,
3 + 4-6, 4-7, 5-6, 6-7)

creates a graph object g with Nv = 7 vertices

#2.2 1 > V(g)
2 + 7/7 vertices, named, from fac8b33:
3 [1] 1 2 3 4 5 6 7

and Ne = 10 edges

#2.3 1 > E(g)
2 + 10/10 edges from fac8b33 (vertex names):
3 [1] 1--2 1--3 2--3 2--4 3--5 4--5 4--6 4--7 5--6 6--7

2Technically, a graph G is unique only up to relabellings of its vertices and edges that leave the
structure unchanged. Two graphs that are equivalent in this sense are called isomorphic.
3The exact representation of ‘igraph’ objects is not visible for the user and is subject to change.

2.2 Creating Network Graphs 15

1

2
3

45

6 7 1

2

3

Fig. 2.1 Left: an undirected graph. Right: a directed graph

This same information, combined and in a slightly different format, is recovered
easily using the function print_all.4

#2.4 1 > print_all(g)
2 IGRAPH fac8b33 UN-- 7 10 --
3 + attr: name (v/c)
4 + edges (vertex names):
5 1 -- 2, 3
6 2 -- 1, 3, 4
7 3 -- 1, 2, 5
8 4 -- 2, 5, 6, 7
9 5 -- 3, 4, 6

10 6 -- 4, 5, 7
11 7 -- 4, 6

A visual representation of this graph, generated simply through the command5

#2.5 1 > plot(g)

is shown in Fig. 2.1, on the left.
The character U seen accompanying the summary of g above indicates that our

graph is undirected, in that there is no ordering in the vertices defining an edge.
A graph G for which each edge in E has an ordering to its vertices (i.e., so that {u, v}
is distinct from {v, u}, for u, v ∈ V) is called a directed graph or digraph. Such edges
are called directed edges or arcs, with the direction of an arc {u, v} read from left to
right, from the tail u to the head v. Note that digraphs may have two arcs between

4Variations on this output are obtained, alternatively, using print or summary. Note that in
applying these and other similar functions to a graph, the resulting output includes an identifier
(here fac8b33) associated uniquely with the graph by igraph. In fact, an abbreviation of the
identifier is returned; the full identifier can be obtained using the graph_id function.
5This is the most basic visualization. We will explore the topic of visualization on its own in more
depth in Chap.3.

16 2 Manipulating Network Data

a pair of vertices, with the vertices playing opposite roles of head and tail for the
respective arcs. In this case, the two arcs are said to be mutual.

Directed edges in graph_from_literal are indicated using a minus/plus
convention. In Fig. 2.1, on the right, is shown an example of a digraph consisting of
three vertices, with two directed edges and one mutual edge.

#2.6 1 > dg <- graph_from_literal(1-+2, 1-+3, 2++3)
2 > plot(dg)

We note that in defining both of the graphs above we have used the standard con-
vention of labeling vertices with the numbers 1 through Nv, which is also the default
in igraph. In practice, however, we may already have natural labels, such as the
names of people in a social network, or of genes in a gene regulatory network. Such
labels can be used instead of the default choice by generating the graph with them
explicitly.

#2.7 1 > dg <- graph_from_literal(Sam-+Mary, Sam-+Tom,
2 + Mary++Tom)
3 > print_all(dg)
4 IGRAPH a21f0d9 DN-- 3 4 --
5 + attr: name (v/c)
6 + edges from a21f0d9 (vertex names):
7 [1] Sam ->Mary Sam ->Tom Mary->Tom Tom ->Mary

Alternatively, vertex labels can be changed from the default after initially creating
the graph, by modifying the name attribute of the graph object.

#2.8 1 > V(dg)$name <- c("Sam", "Mary", "Tom")

2.2.2 Representations for Graphs

Realistically, we do not usually expect to enter a graph by hand, since most networks
encountered in practice have at least tens of vertices and edges, if not tens of thousands
(or even millions!). Rather, information for constructing a network graph typically
will be stored in a data file. At themost elementary level, there are three basic formats:
adjacency lists, edge lists, and adjacency matrices.

An adjacency list representation of a graph G is simply an array of size Nv,
ordered with respect to the ordering of the vertices in V , each element of which is
a list, where the i th list contains the set of all vertices j for which there is an edge
from i to j . This is the representation usually used by igraph, evident in the output
from the function print_all in the examples above.

An edge list is a simple two-column list of all vertex pairs that are joined by an
edge. In igraph, edge lists are implicit, for example, in returning the edge set E .

2.2 Creating Network Graphs 17

#2.9 1 > E(dg)
2 + 4/4 edges from 062bf79 (vertex names):
3 [1] Sam ->Mary Sam ->Tom Mary->Tom Tom ->Mary

The function as_edgelist returns an edge list as a two-column R matrix.
Finally, graphs can also be stored in matrix form. The Nv × Nv adjacency matrix

for a graph G = (V, E), say A, is defined so that

Ai j =
{
1, if {i, j} ∈ E ,

0, otherwise .
(2.1)

In words, A is non-zero for entries whose row-column indices (i, j) correspond to
vertices in G joined by an edge, from i to j , and zero, for those that are not. The
matrix A will be symmetric for undirected graphs.

#2.10 1 > as_adjacency_matrix(g)
2 7 x 7 sparse Matrix of class "dgCMatrix"
3 1 2 3 4 5 6 7
4 1 . 1 1
5 2 1 . 1 1 . . .
6 3 1 1 . . 1 . .
7 4 . 1 . . 1 1 1
8 5 . . 1 1 . 1 .
9 6 . . . 1 1 . 1

10 7 . . . 1 . 1 .

This last choice of representation is often a natural one, given that matrices are
fundamental data objects in most programming and software environments and that
network graphs frequently are encoded in statistical models through their adjacency
matrices. However, their use with the type of large, sparse networks commonly
encountered in practice can be inefficient, unless coupled with the use of sparse
matrix tools.

In igraph, network data already loaded into R in these specific formats can
be used to generate graphs using functions such as graph_from_adj_list,
graph_from_edgelist, and graph_from_adjacency_matrix, respec-
tively. For data stored in a file, the function read_graph can be used. In fact, this
latter function not only supports the three formats discussed above, but also a num-
ber of other formats (e.g., such as GraphML, Pajek, etc.). Conversely, the function
write_graph can be used to save graphs in various formats.

2.2.3 Operations on Graphs

Agraph(s) thatwe are able to load intoRmaynot be the graph thatweultimatelywant.
Various operations on the graph(s) we have available may be necessary, including
extracting part of a graph, deleting vertices, adding edges, or even combiningmultiple
graphs.

18 2 Manipulating Network Data

The notion of a ‘part’ of a graph is captured through the concept of a subgraph.
A graph H = (VH , EH) is a subgraph of another graph G = (VG, EG) if VH ⊆ VG

and EH ⊆ EG . Often we are interested in an induced subgraph of a graph G, i.e.,
a subgraph G ′ = (V ′, E ′), where V ′ ⊆ V is a prespecified subset of vertices and
E ′ ⊆ E is the collection of edges to be found in G among that subset of vertices. For
example, consider the subgraph of g induced by the first five vertices.

#2.11 1 > h <- induced_subgraph(g, 1:5)
2 > print_all(h)
3 IGRAPH 2560ed9 UN-- 5 6 --
4 + attr: name (v/c)
5 + edges from 2560ed9 (vertex names):
6 [1] 1--2 1--3 2--3 2--4 3--5 4--5

The inclusion or exclusion of vertices or edges in a graph G = (V, E) can be con-
ceived of as the application of addition or subtraction operators, respectively, to the
sets V and E . For example, the subgraph h generated just above could also have
been created from g by removing the vertices 6 and 7.

#2.12 1 > h <- g - vertices(c(6,7))

Similarly, g can be recovered from h by first adding these two vertices back in, and
then, adding the appropriate edges.

#2.13 1 > h <- h + vertices(c(6,7))
2 > g <- h + edges(c(4,6),c(4,7),c(5,6),c(6,7))

Finally, the basic set-theoretic concepts of union, disjoint union, intersection, dif-
ference, and complement all extend in a natural fashion to graphs. For example, the
union of two graphs, say H1 and H2, is a graph G in which vertices and edges are
included if and only if they are included in at least one of H1 or H2. For example, our
toy graph g may be created through the union of the (induced) subgraph h defined
above and a second appropriately defined subgraph.

#2.14 1 > h1 <- h
2 > h2 <- graph_from_literal(4-6, 4-7, 5-6, 6-7)
3 > g <- union(h1,h2)

2.3 Decorating Network Graphs

2.3.1 Vertex, Edge, and Graph Attributes

At the heart of a network-based representation of data from a complex system will
be a graph. But frequently there are other relevant data to be had as well. From a
network-centric perspective, these other data can be thought of as attributes, i.e.,
values associated with the corresponding network graph. Equipping a graph with
such attributes is referred to as decorating the graph. Typically, the vertices or edges

2.3 Decorating Network Graphs 19

of a graph (or both) are decorated with attributes, although the graph as a whole
may be decorated as well. In igraph, the elements of graph objects (i.e., particularly
the vertex and edge sequences, and subsets thereof) may be equipped with attributes
simply by using the ‘$’ operator.

Vertex attributes are variables indexed by vertices, and may be of discrete or
continuous type. Instances of the former type include the gender of actors in a social
network, the infection status of computers in an Internet network in the midst of an
on-line virus (e.g., a worm), and a list of biological pathways in which a protein in
a protein–protein interaction network is known to participate, while an example of
the latter type is the voltage potential levels in the brain measured at electrodes in
an electrocorticogram (ECoG) grid. For example, recall that the names of the three
actors in our toy digraph are

#2.15 1 > V(dg)$name
2 [1] "Sam" "Mary" "Tom"

Their gender is added to dg as

#2.16 1 > V(dg)$gender <- c("M","F","M")

Note that the notion of vertex attributes also may be used advantageously to equip
vertices with properties during the course of an analysis, either as input to or output
from calculations within R. For example, this might mean associating the color red
with our vertices

#2.17 1 > V(g)$color <- "red"

to be used in plotting the graph (see Chap. 3). Or it might mean saving the values of
some vertex characteristic we have computed, such as the types of vertex centrality
measures to be introduced in Chap.4.

Edge attributes similarly are values of variables indexed by adjacent vertex pairs
and, as with vertex attributes, they may be of both discrete or continuous type.
Examples of discrete edge attributes include whether one gene regulates another
in an inhibitory or excitatory fashion, or whether two countries have a friendly or
antagonistic political relationship. Continuous edge attributes, on the other hand,
often represent some measure of the strength of relationship between vertex pairs.
For example, we might equip each edge in a network of email exchanges (with
vertices representing email addresses) by the rate at which emails were exchanged
over a given period of time.Orwemight define an attribute on edges between adjacent
stations in a subway network (e.g., the Paris metro) to represent the average time
necessary during a given hour of the day for trains to run from one to station to the
next.

Often edge attributes can be thought of usefully, for the purposes of various
analyses, as weights. Edge weights generally are non-negative, by convention, and
often are scaled to fall between zero and one. A graph for which the edges are
equipped with weights is referred to as a weighted graph.6

6More generally, a weighted graph can be defined as a pair (V, E), where V is a set of vertices, as
before, but the elements in E are now non-negative numbers, with one such number for each vertex

20 2 Manipulating Network Data

#2.18 1 > is_weighted(g)
2 [1] FALSE
3 > wg <- g
4 > E(wg)$weight <- runif(ecount(wg))
5 > is_weighted(wg)
6 [1] TRUE

As with vertex attributes, edge attributes may also be used to equip edges with
properties to be used in calls to other R functions, such as the plot function.

In principle, a graph itself may be decorated with an attribute, and indeed, it is
possible to equip graph objects with attributes in igraph. The most natural use of
this feature arguably is to equip a graph with relevant background information, such
as a name

#2.19 1 > g$name <- "Toy Graph"

or a seminal data source.

2.3.2 Using Data Frames

Just as network graphs typically are not entered by hand for graphs of any nontrivial
magnitude, but rather are encoded in data frames and files, so too attributes tend to
be similarly encoded. For example, in R, a network graph and all vertex and edge
attributes can be conveniently represented using two data frames, one with vertex
information, and the other, with edge information. Under this approach, the first
column of the vertex data frame contains the vertex names (i.e., either the default
numerical labels or symbolic), while each of the other columns contain the values
of a given vertex attribute. Similarly, the first two columns of the edge data frame
contain an edge list defining the graph, while each of the other columns contain the
values of a given edge attribute.

Consider, for example, the lawyer data set of Lazega [5], introduced in Chap.1.
Collecting the information on collaborative working relationships, in the form of
an edge list, in the data frame elist.lazega, and the various vertex attribute
variables, in the data frame v.attr.lazega, they may be combined into a single
graph object in igraph as

#2.20 1 > library(sand)
2 > g.lazega <- graph_from_data_frame(elist.lazega,
3 + directed="FALSE",
4 + vertices=v.attr.lazega)
5 > g.lazega$name <- "Lazega Lawyers"

pair. Analogously, the adjacency matrix A for a weighted graph is defined such that the entry Ai j
is equal to the corresponding weight for the vertex pair i and j .

2.3 Decorating Network Graphs 21

Our full set of network information on these

#2.21 1 > vcount(g.lazega)
2 [1] 36

lawyers now consists of the

#2.22 1 > ecount(g.lazega)
2 [1] 115

pairs that declared they work together, along with the eight vertex attributes

#2.23 1 > vertex_attr_names(g.lazega)
2 [1] "name" "Seniority" "Status" "Gender"
3 [5] "Office" "Years" "Age" "Practice"
4 [9] "School"

(in addition to the vertex name).7

We will see a variety of ways in the chapters that follow to characterize and model
these network data and others like them.

2.4 Talking About Graphs

2.4.1 Basic Graph Concepts

With the adoption of a graph-based framework for representing relational data in
network analysis we inherit a rich vocabulary for discussing various important con-
cepts related to graphs. We briefly review and demonstrate some of these here, as
they are necessary for doing even the most basic of network analyses.

As defined at the start of this chapter, a graph has no edges for which both ends
connect to a single vertex (called loops) and no pairs of vertices with more than one
edge between them (called multi-edges). An object with either of these properties is
called a multi-graph.8 A graph that is not a multi-graph is called a simple graph, and
its edges are referred to as proper edges.

It is straightforward to determine whether or not a graph is simple. Our toy graph
g is simple.

#2.24 1 > is_simple(g)
2 [1] TRUE

7The functions vcount and ecount are aliases for the functions gorder and gsize in igraph,
which return the order and size of the input graph, respectively.
8In fact, the igraph data model is more general than described above, and allows for multi-graphs,
with multiple edges between the same pair of vertices and edges from a vertex to itself.

22 2 Manipulating Network Data

But duplicating the edge between vertices 2 and 3, for instance, yields a multi-graph.

#2.25 1 > mg <- g + edge(2,3)
2 > print_all(mg)
3 IGRAPH f00a980 UN-- 7 11 -- Toy Graph
4 + attr: name (g/c), name (v/c), color (v/c)
5 + edges (vertex names):
6 1 -- 2, 3
7 2 -- 1, 3, 3, 4
8 3 -- 1, 2, 2, 5
9 4 -- 2, 5, 6, 7

10 5 -- 3, 4, 6
11 6 -- 4, 5, 7
12 7 -- 4, 6
13 > is_simple(mg)
14 [1] FALSE

Checking whether or not a network graph is simple is a somewhat trivial but nev-
ertheless important preliminary step in doing a typical network analysis, as many
models and methods assume the input graph to be simple or behave differently if it
is not.

Note that it is straightforward, and indeed not uncommon in practice, to transform
a multi-graph into a weighted graph, wherein each resulting proper edge is equipped
with a weight equal to the multiplicity of that edge in the original multi-graph. For
example, converting our toy multi-graph mg to a weighted graph results in a simple
graph,

#2.26 1 > E(mg)$weight <- 1
2 > wg2 <- simplify(mg)
3 > is_simple(wg2)
4 [1] TRUE

the edges of which match our initial toy graph g,

#2.27 1 > print_all(wg2)
2 IGRAPH 78518b0 UNW- 7 10 -- Toy Graph
3 + attr: name (g/c), name (v/c), color (v/c), weight
4 | (e/n)
5 + edges (vertex names):
6 1 -- 2, 3
7 2 -- 1, 3, 4
8 3 -- 1, 2, 5
9 4 -- 2, 5, 6, 7

10 5 -- 3, 4, 6
11 6 -- 4, 5, 7
12 7 -- 4, 6

but for which the third edge (i.e., connecting vertices 2 and 3) has a weight of 2.

#2.28 1 > E(wg2)$weight
2 [1] 1 1 2 1 1 1 1 1 1 1

2.4 Talking About Graphs 23

Moving beyond such basic concerns regarding the nature of the edges in a graph,
it is necessary to have a language for discussing the connectivity of a graph. Themost
basic notion of connectivity is that of adjacency. Two vertices u, v ∈ V are said to be
adjacent if joined by an edge in E . Such vertices are also referred to as neighbors.
For example, the three neighbors of vertex 5 in our toy graph g are

#2.29 1 > neighbors(g,5)
2 + 3/7 vertices, named, from 2e0a0da:
3 [1] 3 4 6

Similarly, two edges e1, e2 ∈ E are adjacent if joined by a common endpoint in V .
A vertex v ∈ V is incident on an edge e ∈ E if v is an endpoint of e. From this
follows the notion of the degree of a vertex v, say dv, defined as the number of edges
incident on v.

#2.30 1 > degree(g)
2 1 2 3 4 5 6 7
3 2 3 3 4 3 3 2

For digraphs, vertex degree is replaced by in-degree (i.e., din
v) and out-degree (i.e.,

dout
v), which count the number of edges pointing in towards and out from a vertex,
respectively.

#2.31 1 > degree(dg, mode="in")
2 Sam Mary Tom
3 0 2 2
4 > degree(dg, mode="out")
5 Sam Mary Tom
6 2 1 1

It is also useful to be able to discuss the concept of movement about a graph.
For example, a walk on a graph G, from v0 to vl , is an alternating sequence
{v0, e1, v1, e2, . . . , vl−1, el , vl}, where the endpoints of ei are {vi−1, vi }. The length
of this walk is said to be l. Refinements of a walk include trails, which are walks
without repeated edges, and paths, which are trails without repeated vertices. A trail
for which the beginning and ending vertices are the same is called a circuit. Similarly,
a walk of length at least three, for which the beginning and ending vertices are the
same, but for which all other vertices are distinct from each other, is called a cycle.
Graphs containing no cycles are called acyclic. In a digraph, these notions generalize
naturally. For example, a directed walk from v0 to vl proceeds from tail to head along
arcs between v0 and vl .

A vertex v in a graphG is said to be reachable from another vertex u if there exists
a walk from u to v. The graph G is said to be connected if every vertex is reachable
from every other. A component of a graph is a maximally connected subgraph. That
is, it is a connected subgraph of G for which the addition of any other remaining
vertex in V would ruin the property of connectivity. The toy graph g, for example,
is connected

#2.32 1 > is_connected(g)
2 [1] TRUE

24 2 Manipulating Network Data

and therefore consists of only a single component

#2.33 1 > clusters(g)
2 $‘membership‘
3 1 2 3 4 5 6 7
4 1 1 1 1 1 1 1
5
6 $csize
7 [1] 7
8
9 $no

10 [1] 1

For a digraph, there are two variations of the concept of connectedness. A digraph
G is weakly connected if its underlying graph (i.e., the result of stripping away the
labels ‘tail’ and ‘head’ from G) is connected. It is called strongly connected if every
vertex v is reachable from every u by a directed walk. The toy graph dg, for example,
is weakly connected but not strongly connected.

#2.34 1 > is_connected(dg,mode="weak")
2 [1] TRUE
3 > is_connected(dg,mode="strong")
4 [1] FALSE

A common notion of distance between vertices on a graph is defined as the length
of the shortest path(s) between the vertices (which we set equal to infinity if no such
path exists). This distance is often referred to as geodesic distance, with ‘geodesic’
being another name for shortest paths. The value of the longest distance in a graph
is called the diameter of the graph. Our toy graph g has diameter

#2.35 1 > diameter(g, weights=NA)
2 [1] 3

Ultimately, the concepts above are only the most basic of graph-theoretic quantities.
There are a wide variety of queries one might make about graphs and quantities to
calculate as a part of doing descriptive network analysis. We cover more of these in
Chap.4.

2.4.2 Special Types of Graphs

Graphs come in all ‘shapes and sizes,’ as it were, but there are a number of families
of graphs that are commonly encountered in practice. We illustrate this notion with
the examples of four such families shown in Fig. 2.2.

2.4 Talking About Graphs 25

1

2

3

4

5

6

7

1

2

3

4

56

7

1

2

3

4

5

6

7

1
2

3

4

5

6

7

Fig. 2.2 Examples of graphs from four families. Complete (top left); ring (top right); tree (bottom
left); and star (bottom right)

#2.36 1 > g.full <- make_full_graph(7)
2 > g.ring <- make_ring(7)
3 > g.tree <- make_tree(7, children=2, mode="undirected")
4 > g.star <- make_star(7, mode="undirected")
5 > par(mfrow=c(2, 2), mai = c(0.2, 0.2, 0.2, 0.2))
6 > plot(g.full)
7 > plot(g.ring)
8 > plot(g.tree)
9 > plot(g.star)

A complete graph is a graph where every vertex is joined to every other vertex by
an edge. This concept is perhaps most useful in practice through its role in defining a
clique, which is a complete subgraph. Shown in Fig. 2.2 is a complete graph of order
Nv = 7, meaning that each vertex is connected to all of the other six vertices.

26 2 Manipulating Network Data

A regular graph is a graph in which every vertex has the same degree. A regular
graph with common degree d is called d-regular. An example of a 2-regular graph
is the ring shown in Fig. 2.2. The standard lattice, such as is associated visually with
a checker board, is an example of a 4-regular graph.

A connected graph with no cycles is called a tree. The disjoint union of such
graphs is called a forest. Trees are of fundamental importance in the analysis of
networks. They serve, for example, as a key data structure in the efficient design
of many computational algorithms. A digraph whose underlying graph is a tree is
called a directed tree. Often such trees have associated with them a special vertex
called a root, which is distinguished by being the only vertex from which there is a
directed path to every other vertex in the graph. Such a graph is called a rooted tree.
A vertex preceding another vertex on a path from the root is called an ancestor, while
a vertex following another vertex is called a descendant. Immediate ancestors are
called parents, and immediate descendants, children. A vertex without any children
is called a leaf. The distance from the root to the farthest leaf is called the depth of
the tree.

Given a rooted tree of this sort, it is not uncommon to represent it diagrammati-
cally without any indication of its directedness, as this is to be understood from the
definition of the root. Such a representation of a tree is shown in Fig. 2.2. Treating
vertex 1 as the root, this is a tree of depth 2, wherein each vertex (excluding the leafs)
is the ancestor of two descendants.

A k-star is a special case of a tree, consisting only of one root and k leaves.
Such graphs are useful for conceptualizing a vertex and its immediate neighbors
(ignoring any connectivity among the neighbors). A representation of a 7-star is
given in Fig. 2.2.

An important generalization of the concept of a tree is that of a directed acyclic
graph (i.e., the DAG). A DAG, as its name implies, is a graph that is directed and
that has no directed cycles. However, unlike a directed tree, its underlying graph is
not a tree, in that replacing the arcs with undirected edges leaves a (simple) graph
that contains cycles. Our toy graph dg, for example, is directed but not a DAG

#2.37 1 > is_dag(dg)
2 [1] FALSE

since the underlying graph is a triangle and hence a 3-cycle. Nevertheless, it is
often possible to still design efficient computational algorithms on DAGs that take
advantage of this near-tree-like structure.

Lastly, a bipartite graph is a graph G = (V, E) such that the vertex set V may
be partitioned into two disjoint sets, say V1 and V2, and each edge in E has one
endpoint in V1 and the other in V2. Such graphs typically are used to represent
‘membership’ networks, for example, with ‘members’ denoted by vertices in V1, and
the corresponding ‘organizations’, by vertices in V2. For example, they are popular
in studying the relationship between actors and movies, where actors and movies
play the roles of members and organizations, respectively.

2.4 Talking About Graphs 27

Fig. 2.3 A bipartite network

actor1

actor2

actor3

movie1

movie2

#2.38 1 > g.bip <- graph_from_literal(actor1:actor2:actor3,
2 + movie1:movie2, actor1:actor2 - movie1,
3 + actor2:actor3 - movie2)
4 > V(g.bip)$type <- grepl("ˆmovie", V(g.bip)$name)
5 > print_all(g.bip, v=T)
6 IGRAPH 68780ab UN-B 5 4 --
7 + attr: name (v/c), type (v/l)
8 + vertex attributes:
9 | name type

10 | [1] actor1 FALSE
11 | [2] actor2 FALSE
12 | [3] actor3 FALSE
13 | [4] movie1 TRUE
14 | [5] movie2 TRUE
15 + edges from 68780ab (vertex names):
16 [1] actor1--movie1 actor2--movie1 actor2--movie2
17 [4] actor3--movie2

A visualization of g.bip is shown9 in Fig. 2.3.
It is not uncommon to accompany a bipartite graphwith at least one of twopossible

induced graphs. Specifically, a graph G1 = (V1, E1) may be defined on the vertex
set V1 by assigning an edge to any pair of vertices that both have edges in E to at
least one common vertex in V2. Similarly, a graph G2 may be defined on V2. Each of
these graphs is called a projection onto its corresponding vertex subset. For example,
the projection of the actor-movie network g.bip onto its two vertex subsets yields

9The R code for generating this visualization is provided in Chap. 3.

28 2 Manipulating Network Data

#2.39 1 > proj <- bipartite_projection(g.bip)
2 > print_all(proj[[1]])
3 IGRAPH 3782b1c UNW- 3 2 --
4 + attr: name (v/c), weight (e/n)
5 + edges from 3782b1c (vertex names):
6 [1] actor1--actor2 actor2--actor3
7 > print_all(proj[[2]])
8 IGRAPH 3782b1c UNW- 2 1 --
9 + attr: name (v/c), weight (e/n)

10 + edge from 3782b1c (vertex names):
11 [1] movie1--movie2

Within the actor network, actor2 is adjacent to both actor1 and actor3, as the
former actor was in movies with each of the latter actors, although these latter were
not themselves in any movies together, and hence do not share an edge. The movie
network consists simply of a single edge defined by movie1 and movie2, since
these movies had actors in common.

2.5 Additional Reading

A more thorough introduction to the topic of graph theory may be found in any of
a number of introductory textbooks, such as those by Bollobás [1], Diestel [3], or
Gross and Yellen [4]. Details on graph data structures and algorithms are in many
computer science algorithms texts. See the text by Cormen, Leiserson, Rivest, and
Stein [2], for example.

References

1. B. Bollobás,Modern Graph Theory. New York: Springer, 1998.
2. T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, MA:

MIT Press, 2003.
3. R. Diestel, Graph Theory, Third Edition. Heidelberg: Springer-Verlag, 2005.
4. J. Gross and J. Yellen, Graph Theory And Its Applications. Boca Raton, FL: Chapman &

Hall/CRC, 1999.
5. E. Lazega, The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers

in a Corporate Law Partnership. Oxford: Oxford University Press, 2001.

	2 Manipulating Network Data
	2.1 Introduction
	2.2 Creating Network Graphs
	2.2.1 Undirected and Directed Graphs
	2.2.2 Representations for Graphs
	2.2.3 Operations on Graphs

	2.3 Decorating Network Graphs
	2.3.1 Vertex, Edge, and Graph Attributes
	2.3.2 Using Data Frames

	2.4 Talking About Graphs
	2.4.1 Basic Graph Concepts
	2.4.2 Special Types of Graphs

	2.5 Additional Reading
	References

