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1 Training Data and Model Fits

Recall from last class that we considered several models from two model families (nearest neighbor and
polynomial).
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2 Evaluate Simulated Test Data (Best Model)

I simulated 50,000 test observations, evaluated the predictions from each model, and recorded the estimated
MSE/Risk.
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Polynomial
degree edf mse_train mse_test

1 2 8.29 8.36
2 3 5.58 5.34
3 4 4.28 4.13
4 5 4.21 4.06
5 6 4.10 4.13
6 7 4.01 4.21
8 9 3.86 4.37

10 11 3.65 4.63
12 13 3.55 4.78
14 15 3.44 4.94
16 17 3.41 5.03
18 19 3.30 5.01
20 21 3.16 5.14

Nearest Neighbor
k edf mse_train mse_test

50 2.00 6.87 7.06
33 3.03 5.21 5.15
25 4.00 4.59 4.69
20 5.00 4.18 4.40
17 5.88 4.20 4.36
14 7.14 4.09 4.35
12 8.33 3.94 4.38
11 9.09 3.84 4.40
10 10.00 3.86 4.42

7 14.29 3.47 4.61
6 16.67 3.34 4.73
5 20.00 3.16 5.03
4 25.00 2.98 5.31

Observations:

• as the flexibility increases, both classes of models overfit.
– overfit means model too complex
– underfit means model is not complex enough
– see discrepancy between training and test performance

• The polynomial with degree = 4 has the best test performance with an approximate MSE = 4.06.
• The optimal MSE = 4.

– I only know this because I know how the data was generated
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3 Ensemble Models

Can we use the collective wisdom of the crowds to help make a better prediction?

Last class you gave your votes for which model you thought was best:

model edf number of votes

nearest neighbor (k=5) 20.0 14
polynomial (deg=3) 4.0 9
polynomial (deg=2) 3.0 7
nearest neighbor (k=10) 10.0 7
polynomial (deg=5) 6.0 6
polynomial (deg=10) 11.0 4
nearest neighbor (k=20) 5.0 2
nearest neighbor (k=50) 2.0 1
nearest neighbor (k=25) 4.0 1
nearest neighbor (k=15) 6.7 1
polynomial (deg=6) 7.0 1
nearest neighbor (k=13) 7.7 1
nearest neighbor (k=9) 11.1 1
polynomial (deg=11) 12.0 1
polynomial (deg=12) 13.0 1
polynomial (deg=16) 17.0 1
polynomial (deg=20) 21.0 1
nearest neighbor (k=4) 25.0 1
nearest neighbor (k=2) 50.0 1

An ensemble model is one that combines several models together. One approach is to create a ensemble
model which uses as its prediction a weighted sum of the individual model predictions.

fw(x) =
p∑

j=1
wjfj(x)

In our specific example, we will use your votes as the weights to create an ensemble

f̂w(x) = 14
61fknn(x, k = 5) + 9

61fpoly(x, deg = 3) + 7
61fknn(x, k = 10) + ...+ 1

61fpoly(x, deg = 20)

and the corresponding test performance is given by

Test MSE = 1
M

M∑
j=1

(yj − f̂w(xj))2

where M is the number of test observations.

This gives a test MSE of 4.28, which is better than most individual models
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model n w edf mse

polynomial(deg=3) 9 0.15 4.00 4.13
polynomial(deg=5) 6 0.10 6.00 4.13
polynomial(deg=6) 1 0.02 7.00 4.21
ensemble NA NA NA 4.28
nearest neighbor(k=13) 1 0.02 7.69 4.35
nearest neighbor(k=15) 1 0.02 6.67 4.37
nearest neighbor(k=20) 2 0.03 5.00 4.40
nearest neighbor(k=10) 7 0.11 10.00 4.42
nearest neighbor(k=9) 1 0.02 11.11 4.46
polynomial(deg=10) 4 0.07 11.00 4.63
polynomial(deg=11) 1 0.02 12.00 4.64
nearest neighbor(k=25) 1 0.02 4.00 4.69
polynomial(deg=12) 1 0.02 13.00 4.78
polynomial(deg=16) 1 0.02 17.00 5.03
nearest neighbor(k=5) 14 0.23 20.00 5.03
polynomial(deg=20) 1 0.02 21.00 5.14
nearest neighbor(k=4) 1 0.02 25.00 5.31
polynomial(deg=2) 7 0.11 3.00 5.34
nearest neighbor(k=2) 1 0.02 50.00 6.57
nearest neighbor(k=50) 1 0.02 2.00 7.06
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4 Bias-Variance Trade-off

This section explores the bias-variance trade-off for the examples we covered last class. This involves
examining the theoretical properties of an estimator.

4.1 Data Generating Functions
Here we set the data generation functions. X ∼ U [0, 1] and f(x) = 1 + 2x+ 5 sin(5x) and y(x) = f(x) + ε,
where ε iid∼N(0, 2).
#- Simulation functions
sim_x <- function(n) runif(n) # U[0,1]
f <- function(x) 1 + 2*x + 5*sin(5*x) # true mean function
sim_y <- function(x, sd){ # generate Y|X from N{f(x),sd}
n = length(x)
f(x) + rnorm(n, sd=sd)

}
#- Simulation settings
n = 100 # number of obs
sd = 2 # stdev for error

4.2 One Realization

Last class, we explored one realization from this system.
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And then fit several polynomial regression models. Recall by polynomial regression I mean using a predictor
function ŷ(x) = f(x, d) =

∑d
j=0 x

jβj , where d ∈ {0, 1, . . .} is the degree.
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4.3 A second realization

Suppose we drew another training set (using same distributions and sample size n):
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• We get another fitted curve using the new training data.

• While the two curves are visually similar, they are not identical.

• If we took more training samples, we would get more fitted curves

• What we want to study in this section is the likelihood that we will happen to get a good fit given a
single training data set.

4.4 Bias, Variance, and Mean Squared Error (MSE)

• The statistical properties of an estimator can help us understand its potential performance

• Let D = [(X1, Y1), (X2, Y2), . . . , (Xn, Yn)] be training data

• Let θ̂ = θ̂(D) be the estimated value calculated from the training data D

– E.g. θ = f(x), θ̂ = f̂(x | D)
– θ̂ is a random variable because we are treating the data as random; it has a distribution.

4.4.1 Distribution of θ̂

• Consider the distribution of θ̂ = f̂poly(0.25, d = 4).
– This is the distribution of the fit at x = 0.25 from a polynomial (of degree 4) using different

training sets
• I generated 50 different training data sets (each with n = 100), fit a polynomial (deg=4) model to each

data set, and recorded the estimate at x = 0.25.
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4.4.2 Some properties of an estimator

• Bias of an estimator is defined as ED[θ̂]− θ

• Variance of an estimator is defined as VD[θ̂] = ED[θ̂2]− ED[θ̂]2

• MSE of an estimator is defined as MSE(θ̂) = ED[(θ̂ − θ)2]

MSE(θ̂) = ED[(θ̂ − θ)2]
= VD[θ̂ − θ] + ED[θ̂ − θ]2

= VD[θ̂] + ED[θ̂ − θ]2

• Estimators are often evaluated based on MSE, being unbiased, and/or having minimum variance (out
of all unbiased estimators)

• These properties are based on the distribution of an estimate.

– Once we observe the training data, the resulting estimate may be great or horrible.
– However these theoretical properties provide insight into what we can expect and how much

confidence we can have in the estimates.

4.5 Estimating the Bias, Variance, and Mean Squared Error (MSE)

• Last class, we examined the Risk/EPE (e.g., MSE) conditioning on the training data (See Section
6.2.1)

• Now we will relax this and bring in the uncertainty in the training data D

Under a squared error loss function L(Y, f(X)) = (Y − f(X))2, the overall EPE (or EPE before we see
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any training data) at a particular X = x is

MSEx(f) = EDY |X [(Y − f̂D(x))2 | X = x]

= V[Y | X = x] + V[f̂D(x) | X = x] +
(
E[f̂D(x) | X = x]− f(x)

)2

= irreducible error + model variance + model squared bias

where D is the training data, f is the true model, and f̂D(x) is the prediction at X = x estimated from the
training data D.

Note

MSEx(f) = EDY |X [(Y − f̂D(x))2 | X = x]
= EDY |X [(Y − f(x) + f(x)− f̂D(x))2 | X = x]
= EDY |X [(Y − f(x))2] + EDY |X(f(x)− f̂D(x))2 + EDY |X 2(Y − f(x))(f(x)− f̂D(x))
= V [Y | X = x] + EDY |X(f(x)− f̂D(x))2 + 0
= V [Y | X = x] + VDY |X(f̂D(x)) + EDY |X(f(x)− f̂D(x))2

• We can estimate the model variance and bias with simulation
– Generate new data Dm = {(Yi, Xi)}ni=1 for simulations m = 1, 2, . . . ,M (use the same sample

size n)
– Fit the models with data Dm getting f̂Dm(·)
– Now we can estimate the items of interest:

E[f̂D(x)] ≈ f̄(x) = 1
M

M∑
m=1

f̂Dm(x)

V[f̂D(x)] ≈ s2
f (x) = 1

M − 1

M∑
m=1

(f̂Dm(x)− f̄(x))2
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4.5.1 Simulation

I ran 2000 simulations to generate {f̂m(x, deg = d) : d ∈ {0, 1, 2, 4, 8},m ∈ {1, 2, . . . , 2000}}.
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4.5.2 Observations

• This shows the bias and variance of each model.

• You can see that as the flexibility (e.g., degree) of the model increases, the bias decreases but the
variance (especially at the edges) increases.

– The bias is the difference between the true regression function (dark gray line) and the model
mean (dark colored line).

– The variation is seen in the width of the transparent curves, one for each simulation.
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4.5.3 Bias, Variance, and MSE at a single input

• Notice that model variance and model bias vary over x.

• To help see what is going on, we now look at the distributions at x = 0.25 and x = 0.55.
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4.5.4 Integrated MSE

The above analysis examines the MSEx(f) over a set of x’s. However, in a real setting, the overall test error
will be based on all of the actual test X values. So we are usually more interested in the integrated MSE:

MSE(f) = EDY X [(Y − f̂D(X))2]
= EX [MSEX(f)]

=
∫

MSEx(f) Pr(dx)

deg bias.sq var mse

0 9.68 0.13 13.81
1 4.39 0.19 8.58
2 1.33 0.18 5.51
4 0.01 0.22 4.23
8 0.00 0.53 4.53

4.6 What does it all mean

The main point is that we desire to find a predictive model that has just the right flexibility. This will depend
on both the true flexibility of the data as well as the sample size. A model that is too complex will have
low bias, but potentially high variance. A model that is not complex enough will have high bias, but lower
variance.

In a real setting, we will only observe one training data (a single curve) and will have to decide the optimal
flexibility. The following plot shows the estimated distribution of MSE values.
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While its possible that we could just happen to get a particular training data realization that favors a model
other than the globally optimal model, this is unlikely for the bad models. However, it is not uncommon for
“close” models.
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Below is a table of the number of simulations that each model had the best MSE:

degree n

0 0
1 0
2 0
3 397
4 1006
5 486
6 75
7 25
8 4
9 6
10 1

• While the polynomial of degree=4 is most often best model (under the squared error loss), under some
training data sets, the other degree models predict better.

• Conclusion 1: In our toy example, a polynomial with degree=4 is the best model, in principal. However,
for some data (i.e., some training data sets) the models with degree>4 and degree<4 would predict
better.

– Why do more higher degree models (degree > 4) predict better than lower degree models (degree
< 4)?

• Conclusion 2: The above analysis is what is meant by the “bias-variance trade-off”.

– In reality, we only get to observe one realization of the training data so we can never actually
estimate the bias and variance the way we did above

– But we can still estimate the Risk (e.g., MSE) by using resampling methods like cross-validation
or statistical methods like BIC.

– More loosely, when people mention bias-variance trade-off they are referring to the principal that
the best model is one that has just the right flexibility.

– If the model is too complex, it is unlikely to produce a good estimate (across the entire range of
inputs) because it is likely to stray far from the expected mean at certain values.

– If the model is not complex enough, then it will not track with the expected mean across the range
of input values and thus produce poor overall performance.

• Conclusion 3: Performance of a model can vary across the input features X .

– If you are only concerned about performance in a specific range of X , then emphasize these
during training (e.g., weight observations close to X more heavily during model estimation).

– If the test X values are coming from a different distribution than the training X values, then your
model may not be optimal.
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5 Appendix: R Code

5.1 Required R Packages

We will be using the R packages of:

• FNN for k nearest neighbor models
• tidyverse for data manipulation and visualization
• tidymodels (for optional tidymodels approach)

library(FNN)
library(tidyverse)
library(tidymodels)

5.2 Training and Test Data

#-- Functions
sim_x <- function(n) runif(n) # U[0,1]
f <- function(x) 1 + 2*x + 5*sin(5*x) # true mean function
sim_y <- function(x, sd){ # generate Y|X from N{f(x),sd}
n = length(x)
f(x) + rnorm(n, sd=sd)

}

#-- Settings
n = 100 # number of observations
sd = 2 # stdev for error

#-- Generate Training Data
set.seed(825) # set seed for reproducibility
x = sim_x(n) # get x values
y = sim_y(x, sd=sd) # get y values
data_train = tibble(x, y) # training data tibble

#-- Generate Test Data
ntest = 50000 # Number of test samples
set.seed(235) # set *different* seed
xtest = sim_x(ntest) # generate test X's
ytest = sim_y(xtest, sd=sd) # generate test Y's
data_test = tibble(x=xtest, y=ytest) # test data

#-- plot points and true regression function
ggplot(data_train, aes(x,y)) +

geom_point() +
geom_function(fun = f) +
scale_x_continuous(breaks=seq(0, 1, by=.10)) +
scale_y_continuous(breaks=seq(-6, 10, by=2))
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5.3 Evaluating Polynomial Models

We want to evaluate several polynomial models. For each tuning parameter (i.e., polynomial degree), we
need to fit the model on the training data, make predictions on the test data, and score those predictions. Since
we are going to repeat these steps for multiple tuning parameters, its a good time to write a function!
#: Function to fit, predict, and evaluate a polynomial regression model
poly_eval <- function(deg, data_train, data_test){
#: fit model with training data
if(deg==0) m = lm(y~1, data=data_train) # intercept only model
else m = lm(y~poly(x, degree=deg), data=data_train) # polynomial
p = length(coef(m)) # number of parameters
#: calculate training MSE
mse_train = mean(m$residualsˆ2) # training MSE
#: calculate test MSE
yhat = predict(m, data_test) # predictions at test X's
mse_test = mean( (data_test$y - yhat)ˆ2 )# test MSE
#: output a data frame of relevant info
tibble(degree=deg, edf=p, mse_train, mse_test)

}

Let’s try it out
poly_eval(deg = 2, data_train, data_test)

#> # A tibble: 1 x 4
#> degree edf mse_train mse_test
#> <dbl> <int> <dbl> <dbl>
#> 1 2 3 5.58 5.34

Looks good! Now we can iterate over a degree sequence.
#: degree sequence
deg_seq = c(1:6, seq(8, 20, by=2)) # sequence of Degrees

# Using purrr:map_df()
perf_poly = map_df(deg_seq, ~poly_eval(., data_train=data_train, data_test=data_test))
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# Using a loop
perf_poly = vector("list", length(deg_seq))
for(deg in deg_seq){

tmp = poly_eval(deg, data_train=data_train, data_test=data_test)
perf_poly = bind_rows(perf_poly, tmp)

}

Now for the plots
perf_poly %>%

# make long:
pivot_longer(starts_with("mse"), names_to="data", values_to="mse") %>%
# remove 'mse_' from values:
mutate(data = str_remove(data, "mse_")) %>%
# plot:
ggplot(aes(edf, mse, color=data)) + geom_line() + geom_point() +
labs(title="Polynomial Regression", x = 'edf (degree + 1)', y="MSE") +
scale_x_continuous(breaks=seq(2, 30, by=2))
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And we can find the best polynomial degree for our test data
perf_poly %>% slice_min(mse_test)

#> # A tibble: 1 x 4
#> degree edf mse_train mse_test
#> <dbl> <int> <dbl> <dbl>
#> 1 4 5 4.21 4.06
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5.3.1 Tidymodels

We can repeat the process with tidymodels. The tidymodels approach has a nice helper function called
tune_grid() that lets us fit and evaluate models in one function.

One small nuisance step. We have to create a rset object that contains the information about the training
and testing sets. In the future we will use functions like vfold_cv() instead of the manual process we
need to do now.
library(tidymodels)

#: manually create an `rset` object
# Note: normally we would use initial_split() to make train/test split.
# However since we are doing things a bit differently (i.e., we can
# generate as much evaluation data as we want), we have to force things
# a bit.
# Long answer short: you probably won't have to do this step for any
# real analysis.
splits = make_splits(data_train, data_test) %>%

list %>%
manual_rset("train/test")

Next we set up a workflow for polynomial regression with tunable degree. Notice it the step_poly()
function that degree = tune() which indicates the degree needs to be specified.
poly_wf = workflow(

preprocessor = recipe(y~x, data = data_train) %>%
step_poly(x, degree = tune()), # note the tune() for degree

spec = linear_reg()
)

Now we will use the tune_grid() function. All tunable parameters (i.e., those indicated by tune()) need
to be supplied in the grid = argument. In this case, it is degree.
poly_tune = tune_grid(
#: specify workflow
object = poly_wf,

#: specify the grid for all parameters that have tune().
grid = expand_grid(degree = c(1:6, seq(8, 20, by=2))),

#: pass in the `rset` object
resamples = splits,

#: specify the metrics to calculate. The package doesn't give use MSE,
# so we'll use RMSE and later take the squared value.
metrics = metric_set(rmse)

)

The output doesn’t look very informative at this point.
poly_tune

#> # A tibble: 1 x 4
#> splits id .metrics .notes
#> <list> <chr> <list> <list>
#> 1 <split [100/50000]> train/test <tibble [13 x 5]> <tibble [0 x 3]>

Notice that we have a tibble with list columns. We can extract the relevant information using
collect_metrics().
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poly_tune %>%
collect_metrics(summarize = FALSE)

#> # A tibble: 13 x 6
#> id degree .metric .estimator .estimate .config
#> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 train/test 1 rmse standard 2.89 Preprocessor01_Model1
#> 2 train/test 2 rmse standard 2.31 Preprocessor02_Model1
#> 3 train/test 3 rmse standard 2.03 Preprocessor03_Model1
#> 4 train/test 4 rmse standard 2.02 Preprocessor04_Model1
#> 5 train/test 5 rmse standard 2.03 Preprocessor05_Model1
#> 6 train/test 6 rmse standard 2.05 Preprocessor06_Model1
#> # i 7 more rows

The relevant columns are degree and .estimate. But remember the function is returning RMSE, but we
want our results in MSE = RMSEˆ2.
poly_tune %>%

collect_metrics(summarize = FALSE) %>%
mutate(
mse = .estimateˆ2 # recall the estimate is RMSE

) %>%
select(degree, mse)

#> # A tibble: 13 x 2
#> degree mse
#> <dbl> <dbl>
#> 1 1 8.36
#> 2 2 5.34
#> 3 3 4.13
#> 4 4 4.06
#> 5 5 4.13
#> 6 6 4.21
#> # i 7 more rows

5.4 Evaluating k nearest neighbor models

Here is a function that fits a knn model on the training data for a particular k, makes predictions on the test
data, and evaluates the MSE.
#: Function to evaluate kNN
knn_eval <- function(k, data_train, data_test){
# fit model and eval on training data
knn = knn.reg(data_train[,'x', drop=FALSE],

y = data_train$y,
test = data_train[,'x', drop=FALSE],
k = k)

r = data_train$y-knn$pred # residuals on training data
mse_train = mean(rˆ2) # training MSE

# fit model and eval on test data
knn.test = knn.reg(data_train[,'x', drop=FALSE],

y = data_train$y,
test = data_test[,'x', drop=FALSE],
k = k)

r_test = data_test$y - knn.test$pred # residuals on test data
mse_test = mean(r_testˆ2) # test MSE
# results
edf = nrow(data_train)/k # effective dof (edof)
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tibble(k = k, edf = edf, mse_train, mse_test)
}

Let’s try it out
knn_eval(k = 10, data_train, data_test)

#> # A tibble: 1 x 4
#> k edf mse_train mse_test
#> <dbl> <dbl> <dbl> <dbl>
#> 1 10 10 3.86 4.42

Set up a grid of neighborhood size (k).
K = c(50, 35, 25, 20, 18, 15, 12, 10, 8, 7, 6, 5)

And let it run
# Using purrr:map_df()
perf_knn = map_df(K, knn_eval, data_train=data_train, data_test=data_test)

# Alternatively, using a loop
perf_knn = tibble()
for(k in K){
tmp = knn_eval(k, data_train=data_train, data_test=data_test)
perf_knn = bind_rows(perf_knn, tmp)

}

#: Plot Results
perf_knn %>%
# make long:
pivot_longer(starts_with("mse"), names_to="data", values_to="mse") %>%
# remove 'mse_' from values:
mutate(data = str_remove(data, "mse_")) %>%
# plot:
ggplot(aes(edf, mse, color=data)) + geom_line() + geom_point() +
labs(title="kNN Regression", x='edf (n/k)', y="MSE") +
scale_x_continuous(breaks=seq(2, 30, by=2))
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And we can find the best neighborhood size for our test data
#: best knn
perf_knn %>% slice_min(mse_test)

#> # A tibble: 1 x 4
#> k edf mse_train mse_test
#> <dbl> <dbl> <dbl> <dbl>
#> 1 15 6.67 4.13 4.37

5.4.1 Tidymodels

We can slightly modify the tune_grid() we used for polynomials.

First we will specify the knn workflow. In this workflow, the model specification has the tunable parameter
neighbors.
knn_wf = workflow(

preprocessor = recipe(y~x, data = data_train),
spec = nearest_neighbor(neighbors = tune(), # tune this parameter

mode = "regression", # regression / classification
weight_func = "rect" # using unweighted knn
)

)

knn_tune = tune_grid(

#: specify model
object = knn_wf,

#: specify the grid for all parameters that have tune().
grid = expand_grid(neighbors = c(50, 35, 25, 20, 18, 15, 12, 10, 8, 7, 6, 5)),

#: pass in the `rset` object
resamples = splits,

#: specify the metrics to calculate. The package doesn't give use MSE,
# so we'll use RMSE and later take the squared value.
metrics = metric_set(rmse)

)

The output doesn’t look very informative at this point.
knn_tune

#> # A tibble: 1 x 4
#> splits id .metrics .notes
#> <list> <chr> <list> <list>
#> 1 <split [100/50000]> train/test <tibble [12 x 5]> <tibble [0 x 3]>

Notice that we have a tibble with list columns. We can extract the relevant information using
collect_metrics().
knn_tune %>%
collect_metrics(summarize = FALSE)

#> # A tibble: 12 x 6
#> id neighbors .metric .estimator .estimate .config
#> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 train/test 5 rmse standard 2.24 Preprocessor1_Model01
#> 2 train/test 6 rmse standard 2.18 Preprocessor1_Model02
#> 3 train/test 7 rmse standard 2.15 Preprocessor1_Model03
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#> 4 train/test 8 rmse standard 2.13 Preprocessor1_Model04
#> 5 train/test 10 rmse standard 2.10 Preprocessor1_Model05
#> 6 train/test 12 rmse standard 2.09 Preprocessor1_Model06
#> # i 6 more rows

Extract relevant columns and transform RMSE to MSE.
knn_tune %>%
collect_metrics(summarize = FALSE) %>%
mutate(
mse = .estimateˆ2 # recall the estimate is RMSE

) %>%
select(neighbors, mse)

#> # A tibble: 12 x 2
#> neighbors mse
#> <dbl> <dbl>
#> 1 5 5.03
#> 2 6 4.73
#> 3 7 4.61
#> 4 8 4.52
#> 5 10 4.42
#> 6 12 4.38
#> # i 6 more rows

5.5 Comparison of best models
The optimal models (i.e., the model with optimal tuning parameters) have about the same edf.
(best_poly = perf_poly %>% slice_min(mse_test))

#> # A tibble: 1 x 4
#> degree edf mse_train mse_test
#> <dbl> <int> <dbl> <dbl>
#> 1 4 5 4.21 4.06

(best_knn = perf_knn %>% slice_min(mse_test))

#> # A tibble: 1 x 4
#> k edf mse_train mse_test
#> <dbl> <dbl> <dbl> <dbl>
#> 1 15 6.67 4.13 4.37

Let’s see how the resulting predictions appear. We will re-fit each model on the training data and make
predictions on a grid.
data_grid = tibble(x = seq(0, 1, length = 100))

#: optimal polynomial model
opt_poly = lm(y~poly(x, degree=best_poly$degree), data=data_train) # polynomial
yhat_poly = predict(opt_poly, data_grid) # predictions at test X's

#: optimal knn
opt_knn = FNN::knn.reg(select(data_train, x),

y = data_train$y,
k = best_knn$k,
test = data_grid)

yhat_knn = opt_knn$pred

preds = data_grid %>%
mutate(
poly = yhat_poly,
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knn = yhat_knn
) %>%
pivot_longer(cols = c(poly, knn), names_to = "model", values_to = ".pred")

ggplot(data_train, aes(x,y)) +
geom_point() +
geom_function(fun = f, aes(color = "true")) +
geom_line(data = preds, aes(x = x, y = .pred, color=model)) +
scale_x_continuous(breaks=seq(0, 1, by=.10)) +
scale_y_continuous(breaks=seq(-6, 10, by=2)) +
labs(color = "")
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5.5.1 Tidymodels

Use show_best() to see the best models.
show_best(poly_tune, metric = "rmse")

#> # A tibble: 5 x 7
#> degree .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 4 rmse standard 2.02 1 NA Preprocessor04_Model1
#> 2 3 rmse standard 2.03 1 NA Preprocessor03_Model1
#> 3 5 rmse standard 2.03 1 NA Preprocessor05_Model1
#> 4 6 rmse standard 2.05 1 NA Preprocessor06_Model1
#> 5 8 rmse standard 2.09 1 NA Preprocessor07_Model1

show_best(knn_tune, metric = "rmse")

#> # A tibble: 5 x 7
#> neighbors .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 15 rmse standard 2.09 1 NA Preprocessor1_Model07
#> 2 12 rmse standard 2.09 1 NA Preprocessor1_Model06
#> 3 18 rmse standard 2.09 1 NA Preprocessor1_Model08
#> 4 20 rmse standard 2.10 1 NA Preprocessor1_Model09
#> 5 10 rmse standard 2.10 1 NA Preprocessor1_Model05
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Use finalize_workflow() and select_best() to make the final models.
poly_wf %>%

finalize_workflow(
parameters = select_best(poly_tune, metric = "rmse")

) %>%
fit(data = data_train) %>%
predict(data_grid)

#> # A tibble: 100 x 1
#> .pred
#> <dbl>
#> 1 0.549
#> 2 0.890
#> 3 1.22
#> 4 1.54
#> 5 1.86
#> 6 2.16
#> # i 94 more rows

knn_wf %>%
finalize_workflow(
parameters = select_best(knn_tune, metric = "rmse")

) %>%
fit(data = data_train) %>%
predict(data_grid)

#> # A tibble: 100 x 1
#> .pred
#> <dbl>
#> 1 2.39
#> 2 2.39
#> 3 2.39
#> 4 2.39
#> 5 2.39
#> 6 2.39
#> # i 94 more rows
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