
Predictive Pipeline

DS-6030 | Spring 2026

pred-pipe.pdf

Table of contents

1 Linear Models 2
1.1 Linear Regression . 2

1.1.1 Model Structure . 2
1.1.2 Model Fitting (or Parameter estimation) 2
1.1.3 Matrix notation . 3

1.2 Poisson Regression . 3
1.2.1 Model Structure . 3
1.2.2 Model Fitting (or Parameter estimation) 3

2 Prediction Pipeline 4

3 Coding the Predictive Pipeline 6
3.1 tidymodels (R) . 6
3.2 scikit-learn (Python) . 7

Predictive Pipeline DS-6030 | Spring 2026 2/8

1 Linear Models

1.1 Linear Regression

• Linear regression refer to a class of models where the output (predicted value) is a linear
combination (weighted sum) of the input variables

f(x; β) = β0 +
p∑

j=1
βjxj

where x = [x1, . . . , xp]T is a vector of features/variables/attributes and Ŷ |x = f(x; β̂) = xTβ̂
is the predicted outcome at X = x.

• the model parameters for linear (or coefficients or weights), β̂ determine how much influence
each feature has on the predicted output.

1.1.1 Model Structure

• Outcome variable: y ∈ R
• Predictor variables x ∈ Rp

• Model parameters: β = (β0, β1, . . . βp)
• Prediction function: f(x; β̂) = β̂0 + β̂1x1 + β̂1x2 + . . . + β̂1xp = xTβ

1.1.2 Model Fitting (or Parameter estimation)

• Use training data: Dtrain = {(xi, yi)}n
i=1 to fit the model (i.e., estimate the model parameters).

• The model parameters are often selected by minimizing the sum of squared residuals of the
training data (as called ordinary least squares (OLS)).

– But, there are other, and better, ways to estimate the parameters in linear regression (e.g.,
Lasso, Ridge, Elastic Net, Robust, Principal Components).

• Ordinary least squares (OLS) chooses the weights/coefficients that minimize the mean squared
error (MSE) loss function over the training data

β̂ = arg min
β

MSE(β) Note: β is a vector

= 1
n

arg min
β

n∑
i=1

(yi − f(xi; β))2

= 1
n

arg min
β

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 + . . . + βpxip)2

MSE(β) = 1
n

SSE(β)

RMSE =
√

MSE

=
√

SSE/
√

n

Predictive Pipeline DS-6030 | Spring 2026 3/8

1.1.3 Matrix notation

f(x; β) = xTβ

Y =


Y1
Y2
...

Yn

 X =


1 X11 X12 X13 . . . X1p

1 X21 X22 X23 . . . X2p
...

...
...

...
. . .

...
1 Xn1 Xn2 Xn3 . . . Xnp

 β =


β0
β1
...

βp


SSE(β) = (Y − Xβ)T(Y − Xβ)

∂SSE(β)
∂β

= 2XT(Y − Xβ)

=⇒ XTY = XTXβ

=⇒ β̂ = (XTX)−1XTY

1.2 Poisson Regression

• Poisson regression refer to a class of linear models where the output (predicted value) is a
function of the linear combination (weighted sum) of the input variables

η(x; β) = β0 +
p∑

j=1
βjxj

f(x; β) = exp

β0 +
p∑

j=1
βjxj


= exp (η(x; β))

where x = [x1, . . . , xp]T is a vector of features/variables/attributes and Ŷ |x = f(x; β̂) = exp
(
xTβ̂

)
is the predicted outcome at X = x.

• the model parameters for linear (or coefficients or weights), β̂ determine how much influence
each feature has on the predicted output.

1.2.1 Model Structure

• Outcome variable: y ∈ {0, 1, . . .}
• Predictor variables x ∈ Rp

• Model parameters: β = (β0, β1, . . . βp)
• Prediction function: f(x; β̂) = exp

(
β̂0 + β̂1x1 + β̂1x2 + . . . + β̂1xp

)
= exTβ

1.2.2 Model Fitting (or Parameter estimation)

• The model is fitted by minimizing the Poisson Loss, which is the negative log-likelihood of the
Poisson pmf.

– Even better, add a penalty to the loss (e.g., elasticnet) to prevent over-fitting.

Predictive Pipeline DS-6030 | Spring 2026 4/8

2 Prediction Pipeline

We will build up a more complete predictive modeling pipeline, but for today we will focus on this
version that ignores where the data came from, the purpose of modeling (or problem we are trying to
solve), and how to evaluate the predictions so that they help us address the problem.

Predictive Pipeline DS-6030 | Spring 2026 5/8

Figure 1

Predictive Pipeline DS-6030 | Spring 2026 6/8

3 Coding the Predictive Pipeline

First we grab the advertising data (modified from ISLR datasets). I added a categorical promotion
feature and made some of the newspaper values to be missing.

#: Load Data
dir_data = 'https://mdporter.github.io/teaching/data'
url = file.path(dir_data, "advertising.csv")
advert = read_csv(url)

#: Show data
advert
#> # A tibble: 200 x 5
#> TV radio newspaper sales promotion
#> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 230. 37.8 69.2 22.1 No
#> 2 44.5 39.3 45.1 10.4 No
#> 3 17.2 45.9 69.3 9.3 No
#> 4 152. 41.3 NA 18.5 No
#> 5 181. 10.8 58.4 12.9 No
#> 6 8.7 48.9 75 7.2 No
#> # i 194 more rows

advert %>% mutate_if(is.character, factor) %>% summary()
#> TV radio newspaper sales promotion
#> Min. : 0.7 Min. : 0.00 Min. : 0.3 Min. : 1.6 No :183
#> 1st Qu.: 74.4 1st Qu.: 9.97 1st Qu.: 12.9 1st Qu.:10.4 Yes: 17
#> Median :149.8 Median :22.90 Median : 25.6 Median :12.9
#> Mean :147.0 Mean :23.26 Mean : 30.7 Mean :14.0
#> 3rd Qu.:218.8 3rd Qu.:36.52 3rd Qu.: 45.1 3rd Qu.:17.4
#> Max. :296.4 Max. :49.60 Max. :114.0 Max. :27.0
#> NA's :8

3.1 tidymodels (R)

library(tidymodels)

#: Create train/test split of the data
set.seed(20261) # set random seed
n_test = 50 # set number of test observations
prop = n_test / nrow(advert) # calculate proportion of data to use for training
df =

advert |>
initial_split(prop = prop, strata = NULL)

training(df)
testing(df)

#: Create the recipe for pre-processing
rec =

recipe(sales ~ TV + radio + newspaper + promotion,
data = training(df)) |> # use training data

step_impute_median(all_numeric_predictors()) |>
step_ns(TV, deg_free = 5) |>
step_dummy(all_nominal_predictors())

#: Create the linear regression model specification
linear_model = linear_reg() |> set_engine("lm")

#: Put into a workflow
wf =

https://trevorhastie.github.io/ISLR/data.html

Predictive Pipeline DS-6030 | Spring 2026 7/8

workflow(
spec = linear_model,
preprocessor = rec

)

#: Fit the workflow
lm_fit = fit(wf, data = training(df)) # be sure to use training data

#: Make predictions on test data
y_hat = predict(lm_fit, testing(df))

#: Evaluate predictions
rmse_vec(truth = testing(df)$sales, estimate = y_hat$.pred) # using RMSE
#> [1] 1.681
rsq_vec(truth = testing(df)$sales, estimate = y_hat$.pred) # using Rˆ2
#> [1] 0.8966

3.2 scikit-learn (Python)

Using sample data (will fix later)

import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, SplineTransformer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression

np.random.seed(1)
df = pd.DataFrame({

"y": np.random.randn(200),
"x1": np.random.randn(200),
"x2": np.random.choice(["A", "B"], size=200)

})

add some missingness in x1
missing_idx = np.random.choice(df.index, size=20, replace=False)
df.loc[missing_idx, "x1"] = np.nan

X = df[["x1", "x2"]]
y = df["y"]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

numeric_pipeline = Pipeline(steps=[
("impute", SimpleImputer(strategy="median")),
("spline", SplineTransformer(n_knots=6, degree=3, include_bias=False))

])

preprocess = ColumnTransformer(
transformers=[

("num", numeric_pipeline, ["x1"]),
("cat", OneHotEncoder(drop="first", handle_unknown="ignore"), ["x2"])

]
)

pipe = Pipeline(steps=[
("prep", preprocess),
("model", LinearRegression())

])

Predictive Pipeline DS-6030 | Spring 2026 8/8

pipe.fit(X_train, y_train)

y_pred = pipe.predict(X_test)

	Linear Models
	Linear Regression
	Model Structure
	Model Fitting (or Parameter estimation)
	Matrix notation

	Poisson Regression
	Model Structure
	Model Fitting (or Parameter estimation)

	Prediction Pipeline
	Coding the Predictive Pipeline
	tidymodels (R)
	scikit-learn (Python)

