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1 Modeling CV error

Cross-validation gives us noisy measurements of performance; modeling those measurements is the
difference between simple ranking and understanding for decision-making.

I’ve generated n_train = 200 observations and plotted a few b-spline fits.
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The tuning parameter is edf, the effective degree of freedom, which is the number of spline parameters
that get estimated. I’ll use 25 iterations of monte-carlo cross-validation with 20 hold-out and 180
training samples (90-10 split) each iteration.
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A few things to notice:

1. The solid black line is the usual cross-validation average. This would select edf = 8 as the
optimal model.

2. Several edfs look to have comparable MSE to the cross-validation selection.
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3. Some splits select a very low edf (simpler model) while other splits select a very high edf
(complex model).

4. The estimate MSE varies from 2.2 to 6.5.

1.1 Accounting for resample iteration (fold/split)

Notice that the performance estimates vary substantially by the split. Some splits produce MSE
estimates as low as 2.2 while others as high as 6.5. The variability due to split is greater than the
variability due to edf.

To help account for split, I’m going to look at the difference between the MSE at each edf and the
average MSE for the split. In the plot below, each grey line shows the MSE(i, edf) - AvgMSE(i)
where AvgMSE(i) is the average MSE for split i.
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Change in MSE from split average

This helps us see how the edf varies after adjusting for split effect. Let’s put this into a linear model
formulation:

MSE(edf, split) = Intercept + Model Effects + Split Effects + ϵ(edf, split)

= α0 +
17∑

d=4
βd 1(edf = d) +

k∑
i=1

γi 1(split = i) + ϵ(edf, split)

Fitting a least squares (linear regression) model, we get the following estimates. Note: this is
repeated-measures ANOVA.

lm(mse ~ factor(edf) + iter)
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term estimate std.error statistic p.value

(Intercept) 5.34 0.16 32.50 0.00
edf: 5 0.66 0.14 4.70 0.00
edf: 6 -0.42 0.14 -2.99 0.00
edf: 7 -0.76 0.14 -5.42 0.00
edf: 8 -0.82 0.14 -5.84 0.00
edf: 9 -0.72 0.14 -5.07 0.00
edf: 10 -0.61 0.14 -4.30 0.00
edf: 11 -0.60 0.14 -4.26 0.00
edf: 12 -0.60 0.14 -4.25 0.00
edf: 13 -0.55 0.14 -3.91 0.00
edf: 14 -0.45 0.14 -3.21 0.00
edf: 15 -0.44 0.14 -3.10 0.00
edf: 16 -0.43 0.14 -3.08 0.00
edf: 17 -0.46 0.14 -3.24 0.00
iter: 2 0.17 0.19 0.90 0.37
iter: 3 -2.36 0.19 -12.54 0.00
iter: 4 1.63 0.19 8.66 0.00
iter: 5 2.08 0.19 11.04 0.00
iter: 6 2.13 0.19 11.30 0.00
iter: 7 -0.17 0.19 -0.91 0.37
iter: 8 -1.68 0.19 -8.91 0.00
iter: 9 2.27 0.19 12.01 0.00
iter: 10 -0.58 0.19 -3.09 0.00
iter: 11 -0.51 0.19 -2.71 0.01
iter: 12 -0.41 0.19 -2.16 0.03
iter: 13 -0.86 0.19 -4.58 0.00
iter: 14 0.64 0.19 3.42 0.00
iter: 15 -0.28 0.19 -1.50 0.13
iter: 16 1.34 0.19 7.11 0.00
iter: 17 -0.50 0.19 -2.65 0.01
iter: 18 -2.08 0.19 -11.03 0.00
iter: 19 -1.44 0.19 -7.61 0.00
iter: 20 1.21 0.19 6.44 0.00
iter: 21 -2.13 0.19 -11.28 0.00
iter: 22 0.68 0.19 3.59 0.00
iter: 23 1.89 0.19 10.02 0.00
iter: 24 -1.42 0.19 -7.56 0.00
iter: 25 -1.85 0.19 -9.83 0.00

Model Summary:

metric value

sample size 350
number of predictors 38
Adjusted R^2 0.90
sigma_hat 0.50
sigma_hat^2 0.25
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Your Turn #1 : Model Summary

1. What is the size of the data used to fit the model? Are all observations independent?

2. How many parameters are estimated?

3. Is it enough data?

4. What can we do to get better estimates?

1.1.1 Random Effects

The edf coefficients are what we care about. These are supposed to reflect the true EPE. However,
our estimates of edf are impacted by the iteration effects. In other words, all MSE’s from iteration i
share a common random “shock”. So iteration i carries about 1 piece of information instead of many.
Thus the uncertainty in the edf effects is too low if we don’t correctly handle the iteration shocks.
Note: behind the scenes, this is very similar to adding a ridge penalty on the iteration parameters.

library(lme4)
lme4::lmer(mse ~ factor(edf) + (1 | iter), data = cv_mse )

Source of
variability What it represents Variance

Std
dev Meaning

Iteration Differences between
resamples/iterations

2.10 1.45 Each resample shifts the whole MSE
curve up or down by a random amount
with std dev of 1.45

Noise
(epsilon)

Remaining noise within
an iteration

0.25 0.50 Unexplained randomness. After
accounting for edf and iteration, the
MSE still varies by a random amount
with std dev of 0.50.

Here is a graphic showing the estimated coefficients and 95% confidence intervals under each
modeling approach.
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1.1.2 Bayesian Estimation

Without much additional effort we can get a fully Bayesian estimation. This is an example of a
hierarchical Bayes model.

library(rstanarm)
stan_lmer(mse ~ factor(edf) + (1 | iter), data = cv_mse)

Details
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From the posterior samples, it is straightforward to estimate the distribution of the best edf:
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edf n p

edf: 4 0 0.0%
edf: 5 0 0.0%
edf: 6 3 0.0%
edf: 7 3222 26.8%
edf: 8 6514 54.3%
edf: 9 1572 13.1%
edf: 10 212 1.8%
edf: 11 214 1.8%
edf: 12 188 1.6%
edf: 13 62 0.5%
edf: 14 4 0.0%
edf: 15 3 0.0%
edf: 16 2 0.0%
edf: 17 4 0.0%

Interation Noise
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1.1.3 Smooth

Because the edf should be relatively smooth, we could enforce the smoothness in the edf effects. For
example by adding a spline:

library(rstanarm)
stan_lmer(mse ~ s(edf) + (1 | iter), data = cv_mse)

1.1.4 How did we do?

Using a test data of n_test = 100,000 we should get a better approximation of the true performance.



Model Selection and Assessment
Part II DS-6030 | Spring 2026 8/9

edf mse

4 5.05
5 6.03
6 4.31
7 4.23
8 4.22
9 4.25

10 4.25
11 4.27
12 4.28
13 4.29
14 4.30
15 4.30
16 4.34
17 4.38
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1.2 Nested Cross-Validation

Setting up nested cross-valiation. I’m using an outer loop of 100 iterations with 20 monte-carlo
hold-out observations (test). The inner loop is 25 iterations of 20 monte-carlo hold-out observations.
The inner-loop is for selecting the optimal edf and fitting a final model using all the available data
with the optimal edf.
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