
Feature Importance and Explainability
DS 6030 | Fall 2024

feature-imp.pdf

Contents

1 Intro 2
1.1 Donor Acceptance Modeling . 2

2 Model specific feature importance 4
2.1 Linear Models . 4
2.2 Gain Based Feature Importance (for tree models) . 4

3 Permutation Feature Importance 5
3.1 Approach 1: re-fit model . 5
3.2 Approach 2: shuffle before prediction . 6
3.3 Boruta feature selection . 6

4 Shapley (and SHAP) Values for ML 7
4.1 Shapley Values in Cooperative Game Theory . 7
4.2 Donor Acceptance . 8
4.3 Shapley values for explaining a prediction . 10
4.4 SHAP Effects Plots . 14
4.5 SHAP Feature Importance . 15
4.6 Other Explanable ML methods . 16

Feature Importance and Explainability DS 6030 | Fall 2024 2/16

1 Intro

• Feature Importance is the task of understanding how important the features of a predictive model are
to:

a) making predictions, or
b) predictive performance

• Explainability (part of XAI) is the task of better understanding how predictive models use the features
to make predictions.

1.1 Donor Acceptance Modeling
Create a train/test split. Holding out 1000 observations for testing.
library(tidymodels)
n_test = 1000
set.seed(2024)
donor_data =

donor_data_all %>%
initial_split(prop = 1-n_test/nrow(.), strata = outcome)

donor_data
#> <Training/Testing/Total>
#> <29155/1001/30156>

Create a workflow for lightgbm boosted tree model:
library(bonsai)
library(lightgbm)
library(tidymodels)

#: pre-processing specs
rec_lgbm =

recipe(outcome ~
Offer Features
DISTANCE + NUM_REJECT_DON + offer_tod +

Donor Features
ABNL_ECHO_CUM + COD_DON + AGE_DON + BMI_DON + CARDARREST +
CHEST_TRAUMA + CPR_ADMIN + CPR_DURATION + CPRA + CREATININE_max +
HRS_FROM_BD + RISK_HIV_DON + INO_count_max +

Candidate Features
CAND_DIAG + prior_offers_cand + WEIGHT_CAND_KG +
TROPONINI_max + ABO_CAND + AGE_CAND + BMI_CAND +
STATUS_CAND + RACE_CAND + GENDER_CAND +
ECMO_CAND + LIFE_SUPPORT_CAND + VAD_AT_LISTING_CAND +
VENTILATOR_CAND +
days_on_wl_active +

Donor/Candidate Comparison
WEIGHT_RATIO + HEIGHT_RATIO + ABO_MATCH +

Center Features
LISTING_CTR_ACCEPT_RATE_PREV + LISTING_CTR_TX_PREV

, data = donor_data)

#: Define the lightgbm model specification
lgbm_spec =

boost_tree(mode = "classification") %>%
set_engine("lightgbm", num_threads = 6) %>%
set_args(
#: set objective/loss function
objective = "binary",

Feature Importance and Explainability DS 6030 | Fall 2024 3/16

#: parameters to tune
trees = tune(), # num_iters
num_leaves = tune(), # maximum number of leaf nodes
#: fixed tuning parameters
tree_depth = 10, # max depth of tree
learn_rate = 0.1, # learning_rate (shrinking)
min_n = 10, # min nodes in leaf (default value)
loss_reduction = .1, # min_gain_to_split
sample_size = 0.8, # Subsample ratio
colsample_bytree = .75, # Column sampling
#: random seeds
bagging_seed = 123, # seed for sampling observations (sample_size)
seed = 987, # seed for sampling features (mtry)

)

#: Create workflow (combine recipe with model specification)
lgbm_wf = workflow(preprocessor = rec_lgbm, spec = lgbm_spec)

Tuning for the trees and num_leaves parameters using cross-validation and Bayesian optimization
library(tidymodels)

#: set up 10 fold cv
set.seed(1492)
folds = training(donor_data) %>%
rsample::vfold_cv(v = 10, strata = outcome)

#: set valid range of tuning parameters
tuning_range =

list(
trees = dials::trees(range = c(200L, 1000L)),
num_leaves = dials::num_leaves(range = c(2, 50))

)

#: bayesian optimization
opt_bayes =

tune::tune_bayes(
object = lgbm_wf, # tidymodels workflow
resamples = folds, # tidymodels resampling object
param_info = dials::parameters(tuning_range), # range of tuning parameters
initial = 5,
iter = 20,
metrics = metric_set(mn_log_loss, brier_class, roc_auc),
control = control_bayes(verbose = TRUE, verbose_iter = TRUE, seed = 1499)

)

This finds the best tuning parameters to be:
opt_bayes %>%

show_best(metric = "mn_log_loss")
#> # A tibble: 5 x 9
#> trees num_leaves .metric .estimator mean n std_err .config .iter
#> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr> <int>
#> 1 850 3 mn_log_loss binary 0.253 10 0.00186 Iter19 19
#> 2 841 4 mn_log_loss binary 0.253 10 0.00210 Iter20 20
#> 3 789 4 mn_log_loss binary 0.253 10 0.00205 Iter17 17
#> 4 448 4 mn_log_loss binary 0.253 10 0.00167 Iter13 13
#> 5 688 4 mn_log_loss binary 0.254 10 0.00192 Iter15 15

This step will update the tuning parameters and refit on the entire training data

Feature Importance and Explainability DS 6030 | Fall 2024 4/16

lgbm_fit =
lgbm_wf %>%
finalize_workflow(
select_best(opt_bayes, metric = "mn_log_loss")

) %>%
fit(training(donor_data))

lgbm_fit
#> == Workflow [trained] ==
#> Preprocessor: Recipe
#> Model: boost_tree()
#>
#> -- Preprocessor --
#> 0 Recipe Steps
#>
#> -- Model ---
#> LightGBM Model (850 trees)
#> Objective: binary
#> Fitted to dataset with 36 columns

2 Model specific feature importance

2.1 Linear Models

In linear models, using f̂(x) =
∑p
j=1 xj β̂j , the impact of feature j is related to β̂j . To treat each feature

more equally, it is common to use the β̂j after standardizing the features. It is equivalent to use β̂j/σ̂j for
non-standardized features.

2.2 Gain Based Feature Importance (for tree models)

Recall that the gain of a split in a tree model is equal to the improvement in the splitting criterion after making
the split.

The importance of feature j in tree T can be expressed as:

Ij(T) =
∑
t

gain(t) · 1(split t uses featurej)

- In this equation, the importance of feature j is the total gain across all splits that involve feature j. Gain
refers to the reduction in the chosen loss function (e.g., Gini index or mean squared error) for each split.

For an ensemble of trees (e.g., random forest, boosted trees), the importance of predictor j is the average (or
sum) importance from all M trees in the ensemble:

Ij = 1
M

M∑
k=1
Ij(Tk)

• Note: a final normalizing step may transform importance scores to sum to 1

Gain based feature importance in LightGBM

The lgbm_fit object from the above R code is a workflow (tidymodels). To use the
lightgbm::lgb.importance() function, we need to extract the fitted model using
extract_fit_engine().

Feature Importance and Explainability DS 6030 | Fall 2024 5/16

lgbm_fit %>%
extract_fit_engine() %>%
lightgbm::lgb.importance(percentage = FALSE) %>%
as_tibble()

#> # A tibble: 35 x 4
#> Feature Gain Cover Frequency
#> <chr> <dbl> <int> <int>
#> 1 NUM_REJECT_DON 10332. 1599857 84
#> 2 LISTING_CTR_ACCEPT_RATE_PREV 4613. 2165709 136
#> 3 ABNL_ECHO_CUM 3602. 601134 39
#> 4 WEIGHT_RATIO 2259. 2121436 127
#> 5 DISTANCE 2118. 2012109 117
#> 6 prior_offers_cand 1882. 833302 62
#> # i 29 more rows

• The Cover is the number of observations impacted by the splits with feature j.
• The Frequency is the number of splits with feature j.

3 Permutation Feature Importance

An alternative, and model agnostic, approach to feature importance is to measure how much the performance
of the predictions change if the features are manipulated. One way to do this is to modify the feature(s) and
measure the change in average loss. Let S ⊆ {1, 2, . . . , p} be a subset of the p features. Let ZS be a new
dataset where the features in S are randomly permuted/shuffled.

But there are two primary ways to measure the performance change: (1) shuffle the data and re-fit the model
and (2) use the original model and only shuffle before prediction. These are detailed below:

3.1 Approach 1: re-fit model

Let S = j be a single variable.

0. Create a hold-out set Xtest. Fit a model to the training data f̂(X), predict on the hold-out data, and
evaluate the predictions L(Ytest, f̂(Xtest)). If we manipulate any features, the performance should
decrease.

1. Create Zj = [X1:(j−1), P (Xj), X(j+1):p] where P (Xj) is a randomly permuted vector of Xj .

2. Re-fit model f̂j(x) using data Zj

3. Prediction on a hold-out set Xtest and evaluate the loss L(Ytest, f̂j(Xtest)). The change in loss is the
feature importance score. I.e., importance of feature j = L(Ytest, f̂j(Xtest))− L(Ytest, f̂(Xtest)).

4. Repeat steps 1:3 (or 0:3) multiple times. Also, repeat 1:3 using different features.

This approach assesses how important a feature is for making a good prediction. However, there are some
issues to be aware of. Suppose you have a set of highly correlated predictors. Their importance will be near
zero because you can remove any of them, and one of their correlated partners will take up the slack. If the
cost of collecting features is high, then this can be a good way to remove some and maintain high predictive
performance.

Of course, you can always try jointly permuting subsets |S| > 1 (like for Shapley values) to get the joint
importance.

Feature Importance and Explainability DS 6030 | Fall 2024 6/16

3.2 Approach 2: shuffle before prediction

This approach is less computational. You only shuffle the hold-out data.

0. Create a hold-out set Xtest. Fit a model to the training data f̂(X), predict on the hold-out data, and
evaluate the predictions L(Ytest, f̂(Xtest)). If we manipulate any features, the performance should
decrease.

1. Permute one (or more) columns of the hold-out data.

2. Predict and evaluate performance. The change in loss is the feature importance score.

3. Repeat multiple times and take average.

This approach assesses how important each feature is to the model learned from the training data. So in that
set of correlated predictors, maybe only one or two will get used. Those features will appear important, but
the others won’t.

3.3 Boruta feature selection

Boruta is a False Selection Rate (FSR) feature selection method originally designed for random forest (or any
tree-based models).

Boruta for trees

• Introduce additional shuffled features (shadow features). This increased the number of predictor variables
from p to 2p.

• Calculate importance scores for all features (using the built-in split-based importance metrics)
• Record the “hits”: all original features with importance scores greater than max importance from all

shuffled features (these features are deemed important).
• Repeat the process M times (100 by default; or sequential).
• Determine which predictors have significantly more “hits” than expected under null of not-important.

https://www4.stat.ncsu.edu/~boos/papers/wbs2582.pdf

Feature Importance and Explainability DS 6030 | Fall 2024 7/16

4 Shapley (and SHAP) Values for ML

This section deals with model Explainability which is the task of better understanding how predictive models
use features to make predictions.

4.1 Shapley Values in Cooperative Game Theory

Suppose up to p = 4 singers can cooperate together to make a song. Let’s name the people
{Alicia,Bob, Cardi,Drake}. They got together, made a album, and generated $100M. How much should
each artist receive? Is there a fair way to distribute the profits? Shapley values is one “fair” way to distribute
the value (see Wikipedia: Shapley Values for the specifics).

Let S ⊆ {A,B,C,D} be a coalition of the singers and V (S) be the success/value (e.g., sales) of the songs
they make. Pretend we can form all possible

(4
0
)

+
(4
1
)

+
(4
2
)

+
(4
3
)

+
(4
4
)

= 16 coalitions and can measure
the value for each one (note: implicit assumption of independence and non-stochasticity). Let the value of
the empty set V (∅) = 0.

The shapley score for person j is:

φj = 1
num of people

∑
coalitions not involving player j

gain when j is added to the coalition
number of coalitions not involving j of this size

=1
p

∑
S:j 6∈S

(
p− 1
|S|

)−1

V (S ∪ j)− V (S)

=1
p

p−1∑
k=0

(
p− 1
k

)−1 ∑
S:|S|=k

V (S ∪ j)− V (S)

For example, suppose the following coalition scores:

Coalition Value

∅: $0
Alicia: $40
Bob: $30
Cardi: $20
Drake: $10
Alicia and Bob: $75
Alicia and Cardi: $55
Alicia and Drake: $50
Bob and Cardi: $50
Bob and Drake: $40
Cardi and Drake: $25
Alicia, Bob, and Cardi: $95
Alicia, Bob, and Drake: $80
Alicia, Cardi, and Drake: $70
Bob, Cardi, and Drake: $60
Alicia, Bob, Cardi, and Drake: $100

https://en.wikipedia.org/wiki/Shapley_value

Feature Importance and Explainability DS 6030 | Fall 2024 8/16

Alicia Bob Cardi Drake k V wt

0 0 0 0 0 0 0.250
1 0 0 0 1 40 0.083
0 1 0 0 1 30 0.083
0 0 1 0 1 20 0.083
0 0 0 1 1 10 0.083
1 1 0 0 2 75 0.083
1 0 1 0 2 55 0.083
1 0 0 1 2 50 0.083
0 1 1 0 2 50 0.083
0 1 0 1 2 40 0.083
0 0 1 1 2 25 0.083
1 1 1 0 3 95 0.250
1 1 0 1 3 80 0.250
1 0 1 1 3 70 0.250
0 1 1 1 3 60 0.250
1 1 1 1 4 100 Inf

Consider all of Alicia’s contributions:

Coalitions Values Difference

V(Alicia) - V(∅) = 40 - 0 = 40
V(Alicia, Bob) - V(Bob) = 75 - 30 = 45
V(Alicia, Cardi) - V(Cardi) = 55 - 20 = 35
V(Alicia, Drake) - V(Drake) = 50 - 10 = 40
V(Alicia, Bob, Cardi) - V(Bob, Cardi) = 95 - 50 = 45
V(Alicia, Bob, Drake) - V(Bob, Drake) = 80 - 40 = 40
V(Alicia, Cardi, Drake) - V(Cardi, Drake) = 70 - 25 = 45
V(Alicia, Bob, Cardi, Drake) - V(Bob, Cardi, Drake) = 100 - 60 = 40

Alicia = 1
4 (40 + (45 + 35 + 40)/3 + (45 + 40 + 45)/3 + 40) = 40.8333

Doing the same calculations for the other players gives their Shapley values, or the proportion of the $100
total each should receive:

Alicia Bob Cardi Drake

40.83 31.67 19.17 8.33

4.2 Donor Acceptance

We built two predictive models (RF, LogReg) for estimating the probability that a pediatric donor heart is
accepted by a candidate. Interest is in understanding the features clinicians use to base their Accept/Refuse
decisions. There are n = 30, 156 offers and p = 44 predictor variables (features).

Feature Importance and Explainability DS 6030 | Fall 2024 9/16

The most important predictors1 are:

As a running example, let’s consider a particular offer:

feature value

NUM_REJECT_DON 1.00
LISTING_CTR_ACCEPT_RATE_PREV 0.35
ABNL_ECHO_CUM 0.00
DISTANCE 441.74
WEIGHT_RATIO 1.06
prior_offers_cand 1.00
COD_DON Head Trauma
WEIGHT_CAND_KG 38.40
TROPONINI_max -1.00
... ...
f_hat 0.783

1according to SHAP importance

Feature Importance and Explainability DS 6030 | Fall 2024 10/16

4.3 Shapley values for explaining a prediction

Training data D is used to build a predictive model f̂(x), where x = [x1, . . . , xp]. There is a concept
called SHAP (SHapley Additive exPlanations) that uses concepts from Shapley values to generate functions
φ0, φ1, . . . , φp such that the prediction of x can be explained by the linear sum:

f̂(x) = φ0(x) +
p∑
j=1

φj(x)

The value φj(x) is the SHAP value for the jth predictor variable and φ0(x) = φ0 = EX [f̂(X)].

The connection to the original Shapley coalitions is that each feature is a player, and the total value of the full
coalition is f̂(x). Let S ⊆ {1, 2, . . . , p} indicate the set of features in a coalition. The trick is determining
how to form the value function Vx(S), where the subscript x is a reminder that this is the value function for a
prediction at x. This is the big idea:

Vx(S) = ES̄ [f(xS , XS̄)]− EX [f̂(X)]
where XS̄ is from the distribution that is assumed independent from S. That is, we treat the values of the
features in S as known, but pretend the other features values, those in the complement S̄, are missing. The
expectation is over the missing feature values. Note that φ0 = EX [f̂(X)] is the average prediction (or the
prediction when all features are missing).

Let’s come back to our offer example. The average prediction is 0.116. Consider the coalition S =
{NUM_REJECT_DON, LISTING_CTR_ACCEPT_RATE_PREV}.

feature value

NUM_REJECT_DON 1.00
LISTING_CTR_ACCEPT_RATE_PREV 0.35
ABNL_ECHO_CUM _____
DISTANCE _____
WEIGHT_RATIO _____
prior_offers_cand _____
COD_DON _____
WEIGHT_CAND_KG _____
TROPONINI_max _____
All other features ...
f_hat _____

We need to fill in the missing feature values with their expected values. But we have some options: (i)
condition on XS = xS , (ii) treat XS and SS̄ as independent, (iii) treat all features as independent, etc.

Let’s consider option (ii), treating XS and SS̄ as independent. We can estimate the expected value by
averaging predictions from replacing the missing values with values from the training data D.

E[f̂(X) | XS = xS , XS̄ = missing] ≈ 1
n

n∑
i=1

f̂(ZSi) where ZSi = [xS , Xi,S̄]

where Xi,S̄ are feature values for S̄ from observation i. Another way to express this for this example is
ZSi = xwS +Xi(1− wS) where wS = [1, 1, 0, 0, . . . , 0] indicates the first two features are in coalition S.

Feature Importance and Explainability DS 6030 | Fall 2024 11/16

Note

You need the prediction function f̂(z) to be able to calculate the prediction for any z.

feature x_S offer: 1 offer: 2 offer: 3 offer: 4

NUM_REJECT_DON 1.00 1.00 1.00 1.00 1.00
LISTING_CTR_ACCEPT_RATE_PREV 0.35 0.35 0.35 0.35 0.35
ABNL_ECHO_CUM _____ 0.50 1.00 0.00 0.00
DISTANCE _____ 536.99 457.03 210.61 433.86
WEIGHT_RATIO _____ 0.81 1.27 0.76 2.06
prior_offers_cand _____ 0.00 0.00 0.00 0.00
COD_DON _____ CVA Infection (CNS) Head Trauma Head Trauma
WEIGHT_CAND_KG _____ 3.10 6.37 9.00 3.30
TROPONINI_max _____ 5.00 0.10 2.78 2.78
All other features
f_hat _____ 0.097 0.006 0.188 0.149

If we repeat this procedure for all subsets S ⊆ {1, 2, . . . , p} and use the formula to calculate all the Shapley
values for offer x, we get:

feature value Shapley

NUM_REJECT_DON 1.00 0.094
LISTING_CTR_ACCEPT_RATE_PREV 0.35 0.202
ABNL_ECHO_CUM 0.00 0.086
DISTANCE 441.74 0.033
WEIGHT_RATIO 1.06 0.022
prior_offers_cand 1.00 0.039
COD_DON Head Trauma 0.022
WEIGHT_CAND_KG 38.40 0.007
TROPONINI_max -1.00 0.020
All other features ... 0.143
f_hat 0.783 0.116

Here are the Shapley values for a different offer. This offer has an estimated acceptance probability of only
0.008, lower than average.

Feature Importance and Explainability DS 6030 | Fall 2024 12/16

feature value Shapley

NUM_REJECT_DON 24.00 -0.046
LISTING_CTR_ACCEPT_RATE_PREV 0.05 -0.020
ABNL_ECHO_CUM 0.00 0.012
DISTANCE 634.54 -0.019
WEIGHT_RATIO 0.93 0.001
prior_offers_cand 0.00 0.010
COD_DON Anoxia -0.006
WEIGHT_CAND_KG 23.65 -0.008
TROPONINI_max 5.41 -0.009
All other features ... -0.021
f_hat 0.008 0.116

Here are the Shapley values for a sample of 300 random offers:

Feature Importance and Explainability DS 6030 | Fall 2024 13/16

4.3.1 Estimating Shapley Values

There are too many features (p = 44) to exhaustively calculate all subsets (at least for my level of patience).
Also, note that we need to make repeated calls to the prediction function, so the speed of prediction will play
a role in estimating the Shapley values.

1. Shapley Sampling

Štrumbelj and Kononenko (2014) propose an approximation with Monte-Carlo sampling (see IML book
9.5.3.3):

φ̂j(x) = 1
M

M∑
m=1

f̂(ZSm∪j
m)− f̂(ZSm

m)

where Sm is a random subset. For each iteration, two samples are drawn (i) random data instance (i.e., a row
of data) (ii) random set of features Sm that does not include j. Form ZSm∪j

m and make a prediction. Then
replace feature j with xj and make another prediction. The difference between the two predictions is the
gain/importance of feature j to the prediction.

Here is an example using four samples:

iter 1:
 feature: present

iter 1:
 feature: missing

iter 2:
 feature: present

iter 2:
 feature: missing

iter 3:
 feature: present

iter 3:
 feature: missing

iter 4:
 feature: present

iter 4:
 feature: missing

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
feature

X
Z

Feature: 3

2. KernSHAP

Recognizing that the Shapley values can be specified in a linear model

f̂(x) = φ0(x) +
p∑
j=1

φj(x)

KernelSHAP is an approach to estimate the Shapley values using weighted linear regression:

φ̂(x) = arg min
φ0,φj

∑
S

w(S)

f̂(xS)− φ0 −
∑
j

φj

2

https://link.springer.com/article/10.1007/s10115-013-0679-x
https://christophm.github.io/interpretable-ml-book/shapley.html#estimating-the-shapley-value
https://christophm.github.io/interpretable-ml-book/shapley.html#estimating-the-shapley-value

Feature Importance and Explainability DS 6030 | Fall 2024 14/16

using the weight function

w(S) = 1− p(p
kS

)
kS(p− kS)

3. Model specific methods

TreeSHAP, DeepSHAP, MaxSHAP

4.4 SHAP Effects Plots

We can estimate the SHAP values for a sample of the data and make marginal effects plots. The following
scatterplots are formed from

{xij , φij}

where xij is from the data and φij is the jth SHAP value for observation i.

−10%

−5%

0%

5%

10%

0 10 20 30 40
NUM_REJECT_DON

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

0.0 0.1 0.2 0.3 0.4 0.5
LISTING_CTR_ACCEPT_RATE_PREV

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

Normal Unknown Abnormal
ABNL_ECHO_CUM

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

0 500 1000 1500
DISTANCE

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

Feature Importance and Explainability DS 6030 | Fall 2024 15/16

−10%

−5%

0%

5%

10%

0.5 1.0 1.5 2.0 2.5 3.0
WEIGHT_RATIO

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

0 10 20 30 40
prior_offers_cand

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

Anoxia CVA Head Trauma Other
COD_DON

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

0 30 60 90 120
WEIGHT_CAND_KG

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

−10%

−5%

0%

5%

10%

0.0 2.5 5.0 7.5
TROPONINI_max

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

4.5 SHAP Feature Importance

Permutation and gain based feature importance measures how much the performance changes if the features
are manipulated. Alternatively, SHAP feature importance measures how much the predictions change if the
features are manipulated (i.e., treated as missing).

The larger a feature’s absolute value of the Shapley values (in the data) the more influence it has on the
predictions. The SHAP feature importance score is given by the average absolute value (over the data).

Ij = 1
n

n∑
i=1
|φij |

I think variance or standard deviation would also be a good metric for variable importance.

Feature Importance and Explainability DS 6030 | Fall 2024 16/16

Looking back up to the plots. The feature importance is a measure of the average deviation from the points
(shapley values) and the horizontal line at 0.

−10%

−5%

0%

5%

10%

0 10 20 30 40
NUM_REJECT_DON

E
st

im
at

ed
 in

flu
en

ce
 (

pr
ob

ab
ili

ty
)

model

Logistic Regression

Random Forest

4.6 Other Explanable ML methods

Interpretable Machine Learning by Christoph Molnar describes several other methods to help explain the
predictions from an ML model (e.g., PDP, LIME).

https://christophm.github.io/interpretable-ml-book/

	Intro
	Donor Acceptance Modeling

	Model specific feature importance
	Linear Models
	Gain Based Feature Importance (for tree models)

	Permutation Feature Importance
	Approach 1: re-fit model
	Approach 2: shuffle before prediction
	Boruta feature selection

	Shapley (and SHAP) Values for ML
	Shapley Values in Cooperative Game Theory
	Donor Acceptance
	Shapley values for explaining a prediction
	SHAP Effects Plots
	SHAP Feature Importance
	Other Explanable ML methods

