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1 Introduction to Ensemble Models

Ensemble models combine predictions from several individual models (individual models are
also called base learners).

1.1 Notation

e Observed data:

- D= {(l’l, 3/1), (502792)7 ceey (J:nvyn)}
— There are n observations

— Regression: y; € R
— Classification: y; € G

e Base learners (i.e., individual models)

- §1($)7§2($), e agM(x>
— There are M base models

e Ensemble Model
- f@) = F(@1(2), ga(@), .., gu (@)

— F is generic notation for methods of combining, aggregating, or using the information from all
M models to make a prediction.

* Summary: Ensemble approaches differ in which base models are used how they are combined
* Benefits:

— Collective Knowledge of Crowds / Mixture of Experts
— Bagging: variance reducer
— Boosting: bias reducer

1.2 Bagging

Bagging fits the same base model to bootstrap samples of the observed data and averages the predictions
from each model.

* The base model, g(x), is usually a tree (or other high variance model)

* The predictions from the base models are averaged:

) 1 M
f(z) = MZ?J(J? | D)
k=1

* M is the number of bootstrap samples (and thus base models)
Dy is the k™ bootstrap sample
* §(z | D;) is the model fit to the k™ bootstrap sample
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Bagging lllustration

Bw+g+(q p NC! V.‘m. A Combint /
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1.2.1 Bagging Variations

* Random Forest models fit trees to bootstrap data, but with the extra de-correlation step of only
considering a subset of features for each split.

* Sub-bagging: D; is a sub-sample (less than n) without replacement

* Bragging: use the median instead of the mean to combine predictions

f(x) = median(§(x | D7), §(x | D3),..., (= | Dir)
* Bumping: Like bagging, but choose best model instead of averaging.
f(z) = g(z | D3y)

— where opt = arg miny, 3 L(ys, (xi | D))
— Include the original data D in the comparison
— Thus, only a single (potentially bagged) dataset is being used for the final model

Regular 4-MNode Trea Bumpad 4-Noda Tras

* Cross-Validation Committee: instead of using bootstrap samples, use cross-validation to make the

different training sets
M

Z (x| D\ Dy)

» D\ Dy, are all the observations not included in the k" fold.

— In this notation, there are M folds
— Special case of sub-bagging!

* The special case of leave-one-out:

* Same tuning parameters used for all base models
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2 Model Averaging and Stacking

The basic idea of model averaging and (linear) stacking is simple to represent:
A M
fla) = angr(z)
k=1

* The estimated weight a; determines how much the final aggregate model is influenced by model gy (z)

* Bagging uses equal weights a;, = 1/M (i.e., nothing is estimated) and the same base models (e.g.,
trees).

2.1 Model Selection
Model selection is the approach of choosing the single best model.

* In this setting, @ = [d1, ..., dy] is one-hot
— All a; = 0, except one is 1.
—a,€{0,1}, M 4 =1
The best model is selected by: resampling (e.g., cross-validation, OOB error), AIC/BIC, GCV, LOO-CYV, etc.

* We have done a type of model selection in choosing the optimal tuning parameters in ridge/lasso/mtry/k,
etc.

Ensemble Motivation

We may be able to obtain better predictions if we combine all the models instead of just picking the best.

2.2 Model Averaging
Let there be M candidate models.

* Assume one of the M models is correct (i.e., one model generated the data)
— Let M denote the true model that generated the data

* Let m, = Pr(M = k) is the prior probability that model & is the true model

* (D[ M=k)= Jogp(D | Op, M =Ek)[f(Or | M =Fk)dby

The posterior probability of model k is

p(D’M:k)'Wk

PrM=RID) = = D M= m) -1

The best prediction (under a squared error loss) is

f*(x) =E[Y | X =z, D]

M
=Y Pr(M=k|D)-E[Y | X =2,D, M =k
k=1

M
= ak - gi(x)
k=1

* gp(z) =E[Y | X =z, D, M = k] is the best prediction from model .
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* a = Pr(M = k| D) is the posterior probability that model & is the correct model

Likelihood

In words, P(D | M = k) is the probability of observing data D given that the true model is k. However,
most probability models have unknown model parameters 6. For example the Gaussian distribution has model
parameters p (the mean) and o (the standard deviation).

The likelihood is a function of the model parameters:

L(6x) = P(D | O, M = k)
1. Bayesian. Specify a prior distribution fj () for the model parameters of model k.
p(D | M =k) = Ey, [L(0)]
— [ LO)(6)d0
e
— [ oD I0.M=R)0)ds
O
2. Frequentist (Maximum Likelihood). Set 8 to the value that maximizes the likelihood.
p(D | M = k) = argmax L(6)
0

= argmaxp(D | 6, M = k)
9

2.2.1 BIC/AIC
Recall that we considered AIC and BIC for model selection (along with cross-validation).
AIC(k) = —2log L(;) + 2d(k)
BIC(k) = —2log L(,) + logn - d(k)
« L(6y) = maxgco, p(D | 6, M = k) is the maximized likelihood for model %
* d(k) is the effective degrees of freedom for model & (under MLE)

It turns out that under certain settings (a bit beyond the scope of this course) that BIC is a good estimate of
—2logp(D | M = k). Therefore,

logp(D | M = k) ~ logp(D | O, M = k) —logn - d(k)/2

—$BIC(k)

p(D | M=k)=~ ¢~ 2BIC(K)

If we fill this into the posterior and set equal priors (7, = 1/M) we get

e—%BIC(k)

Thus for any model where AIC/BIC can be calculated (i.e., there is a likelihood and estimated degrees of
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freedom) we can use the following ensemble:
. M
f@)=>" ange(x)
k=1

* where §i(x) is the prediction from model &
* And the weights are:

BIC Version

R eféBIC(k)
A = ————F————
z ef%BIC(m)

m

AIC Version

A 6f%AIC(k)
ap =

Zm eféAIC(m)
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2.3 Linear Stacking

A linear stacking model combines base models as a weighted sum

« Strictly speaking, this is a bit more general that model averaging as the weights aren’t constrained to
sum to 1 or even be non-negative. (Although it is essentially the same idea.)

* Stacking is popular in prediction contests as it is a great way to combine models from teammates

* Notice that each model §i(x) and the weights & = (a1, g, . . ., apr) must be estimated.

Your Turn #1

1. In the best subsets and step-wise approaches, model gi(z) is the best linear model with k
predictors. What are the optimal weights if selected according to least squares (using the training
data):

n M
4 = argmin Z(yz = Z ardr(x:))?
a€RM 1 k=1

2. In lasso/ridge regression, model gy () is the model corresponding to \x. What are the optimal
weights if selected according to least squares (using the training data):

n M
@ = arg min Z(yz - Z ardr(xi))?
acRM k=1

3. What would be a better way to select a?
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2.3.1 Linear Stacking (Single Hold-Out)

The main idea behind linear stacking is to find the weights using out-of-sample predictions.

Algorithm: Single Hold-out Stacking

1. Partition the data into a training and testing set D = [Dyyain, Diest]
2. Fit each model with the data from the training set and make predictions for the data in test set
o Let gx(x; | Dirain) denote the prediction for test observation i using the training data
Dtrain
3. The optimal weights are selected as:

M
a = arg min Z L <yia Z ag gk(l'z | Dtrain))
a

1€ Diest k=1

4. (optional) The final prediction is made by fitting each model with all the data

~ M
f@) =2 argi(z | D)

k=1

* Note: the hold-out/test data is only used to estimate the weights

Because the prediction §;|x; is made from models that aren’t trained with (z;, y;), the stacking weights are
fairly adjusted for different model complexities.

* E.g., a model that is too complex (overfits) will not make good estimates on the hold-out data and
hence should receive a low weight.

Stacking Features

Another way to view stacking is that each model creates a set of new features (feature engineering):

Zik = gk(xl | Dtrain)
e where x; € Diegt.

and uses a simple model (e.g., linear regression or logistic regression) to estimate the weights:

M
G = arg min Z L (yi, Z ag Zik)
@ k=1

iEDtest
* E.g., using linear regression, @ = (Z12)"'Z'Y
» Note: we could also use constrained optimization to force the weights to be non-negative and sum to one
(model averaging).
» Non-linear stacking: treat the Z; as new features in a non-linear model.
* Add in the original feature X5 as interactions if certain regions features space are better predicted by
certain models.

— i.e., weights vary over feature space.
— trees may be good ensemble models for this if there is sufficient hold-out data.
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Hold-out Stacking lllustration

2.3.2 Linear Stacking Example

Implement a linear stacking model to predict ridership at a Chicago train station.

library (modeldata)
library (tidymodels)
library (tidyverse)

data("Chicago", package = "modeldata") # load Chicago train ridership data

head (Chicago)

#> # A tibble: 6 x 50

#> ridership Austin Quincy Wells Belmont Archer. 35th Oak_ Park Western Clark_Lake

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 15.7 1.46 8.37 4.60 2.01 1.42 3.32 15.6
#> 2 15.8 1.50 8.35 4.72 2.09 1.43 3.34 15.7
#> 3 15.9 1.52 8.36 4.68 2.11 1.49 3.36 15.6
#> 4 15.9 1.49 7.85 4.77 2.17 1.44 3.36 15.7
#> 5 15.4 1.50 7.62 4.72 2.06 1.42 3.27 15.6
#> 6 2.42 0.693 0.911 2.27 0.624 0.426 1.11 2.41
#> # 1 42 more variables: Clinton <dbl>, Merchandise Mart <dbl>,

#> # Irving Park <dbl>, Washington Wells <dbl>, Harlem <dbl>, Monroe <dbl>,

#> # Polk <dbl>, Ashland <dbl>, Kedzie <dbl>, Addison <dbl>,

#> # Jefferson_Park <dbl>, Montrose <dbl>, California <dbl>, temp_min <dbl>,

#> # temp <dbl>, temp _max <dbl>, temp_change <dbl>, dew <dbl>, humidity <dbl>,
#> # pressure <dbl>, pressure_change <dbl>, wind <dbl>, wind_max <dbl>,

#> # gust <dbl>, gust_max <dbl>, percip <dbl>, percip max <dbl>,
ggplot (Chicago, aes(ridership)) + geom_histogram(boundary = 0, binwidth = 1)
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#:

count

600 -

400

200

ridership

create train/test split

n_hold_out

p_h
dat

#: model 1:

old_out
a_split

500

n_hold_out / nrow(Chicago)
initial_split (Chicago, prop = 1 - p_hold_out)

RF’

library (ranger)
set.seed (2023)
= ranger (ridership ~ ., data = training(data_split))
Z1l_rf = predict (gl, testing(data_split))$predictions

gl

#: model 2:

N =

makeX (

train

test
)

(penalized) linear regression. Use cv to select lambda.
library (glmnet)

# one—hot encoding of categorical predictors
= training(data_split) %>% select (-ridership),
testing(data_split) %>% select (-ridership),

set .seed (2023)

g2 = cv.glmnet (X$x, training(data_split)$ridership) # tune lambda with 10-fold cv
Z2_1lr = predict (g2, X$xtest, s = "lambda.min") # choose lambda.min

#: model 3: random model

set.seed (2023)

g3 <- function (data_test) runif (nrow(data_test), min = 0, max = 25)

Z3_rand = g3 (testing(data_split))

#: linear regression stacking model

data_test testing(data_split) %>% mutate(Z1_rf, Z2_1lr, Z3_rand)

fit_stacking
summary (fit_stacking)

#>
#>
#>
#>
#>
#>
#>
#>

= Im(ridership ~ Z1_rf + Z2_1lr + Z3_rand, data = data_test)

Call:
Im(formula = ridership ~ Z1l_rf + Z2_1lr + Z3_rand, data = data_test)
Residuals:
Min 10 Median 30 Max
-15.793 -0.434 0.365 1.031 11.499
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#> Coefficients:

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 0.1498 0.4109 0.36 0.716

#> Z1_rf 1.2249 0.1114 11.00 <2e-16 #***

#> Z2_1r -0.2341 0.1119 =2.,09 0.037 =

#> Z3 rand -0.0111 0.0178 -0.62 0.533

#> ———

#> Signif. codes: 0 'xxx' 0.001 'xx' 0.01 '#' 0.05 '.'" 0.1 ' ' 1
#>

#> Residual standard error: 2.88 on 496 degrees of freedom

#> Multiple R-squared: 0.806, Adjusted R-squared: 0.805

#> F-statistic: 687 on 3 and 496 DF, p-value: <2e-16

data_test %>% select (ridership, starts_with("72"))

ridership

Z1 «f

10 20

0

0 5

10 15 20

#: final predictive base models
set .seed (2023)

gl_final = ranger (ridership ~ ., data = Chicago)

g2_final = cv.glmnet (do.call (rbind, X),
ChicagoS$ridership)

g3_final = g3

#: final predictive model
# Left as an exercise.

(weighted sum of updated base models)

2.3.3 Linear Stacking (Cross-validated)

The main idea behind linear stacking is to find the weights using out-of-sample predictions.

Algorithm: Cross-Validated Stacking

1. Partition the data into V-folds (D1, Da, ..., Dy)
2. Fit each model with the data from all folds except fold v and make predictions for the data in
fold v
* Repeat for all V' folds
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* Let gx(x; | D\ D,,) denote the prediction for observation ¢ using all the data except the
data in the same fold as i (i.e., D,, is the data in the same fold as observation ¢)
3. The optimal weights are selected as:

n M
a=argmin ) L (yz', > ak gi(zi | D\ Dw))
a

i=1 k=1
4. (optional) The final prediction is made by fitting each model with all the data

M

f@) =" argr(z | D)

k=1

* Note: cross-validation is only used to estimate the weights

Because the prediction §j;|x; is made from models that aren’t trained with (z;, y;), the stacking weights are
fairly adjusted for different model complexities.

* E.g., a model that is too complex (overfits) will not make good estimates on the hold-out data and
hence should receive a low weight

Stacking Features

Another way to view stacking is that each model creates a set of new features (feature engineering):

Zik = gx(z; | D\ Dy,)

and uses a simple model (e.g., linear regression or logistic regression) to estimate the weights:
n M
a = arg min Z L <yi, Z W Zik>
w i=1 k=1
* E.g., using linear regression, @ = (Z12)"1Z'Y

» Note: we could also use constrained optimization to force the weights to be non-negative and sum to one
(model averaging)
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Cross-Validation Stacking lllustration




Ensembles DS 6030 | Fall 2024 18/20

3 Ensemble Models

3.1 Boosting Preview

So far, we have focused on fitting the base models in parallel. In boosting, the base models are fit sequentially.

Sequential vs. Parallel ensembles

_Parallel Ensembles
Ensemble.

FH’/T'MU\ \ M

(_Or\n'\ A

U)\oh A (\u\

A

\L %{\« Zw %K(x\

on i)
u X ) (AN tes L‘» GV«
D 3 | 3 tﬁ AGE z_w((l“(x\\x

The general idea of boosting is to fit models sequentially, where each model depends on the combination of
previous models.

There are two primary approaches:

1. Gradient Boosting: Sequentially fit models to the (pseudo) residuals, where the residuals are larger for
observations that are poorly predicted.

2. AdaBoost: Sequentially fit to re-weighted data, where the weights are larger for observations that are
poorly predicted.

Boosting is primarily a bias reducer

* The base models are often simple/weak (low variance, but high bias) models (like shallow trees)
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3.2 Constructing Ensemble Models

Ensemble methods differ on (i) which base models are included and (ii) how the base models are combined
to form a final prediction.

Here are a few thoughts on different ensemble configurations

* Think about how these impact the overall bias and variance (including model correlation) trade-off

* Some of these ideas were taken from: Dietterich T.G. (2000) Ensemble Methods in Machine Learning. In:
Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science, vol 1857. Springer, Berlin,
Heidelberg

3.2.1 Fitting Base Learners

1. Use same base learners (with different data/initialization) or different base learners.
* Bagging and RF uses the same base learners, but fit with different (bootstraped) data
* Better predictions may be achieved by using very different base learners (e.g., random forest,
xgboost, GAM, ANN)

2. Use different data to train each model.
* Bagging/RF uses bootstrap data to build different models
* Boosting sequentially uses re-weighted or modified/residuals data

3. Use different sets of features to train each model.
* RF randomly selects a sub-set of features for making each split
» Has the potential to decrease correlation between base learners

4. Use different transformations of outcome variable to build models.
 E.g., fit models to y and also ¢’ = log y (and then backtransform)
* E.g., one-vs-rest for classification
* Gradient Boosting sequentially fits models to current residuals

5. Use randomness in model fitting.
* use different initializations
* RF uses random subset of features for each split
* Average multiple stochastic models (of same family/tuning) from different seeds

3.2.2 Combining Models/Predictors
The base models can be combined in many different ways
1. Weighted sum/average

* Model Averaging
* Stacking

2. Choose the best one

* Model Selection
* (all weights are zero except 1 weight is one)

3. Use the median prediction (Bragging)
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4. Parallel vs. Sequential

* Bagging is parallel
* Boosting is sequential
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