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1 Classification Intro

1.1 Set-up
* The outcome variable is categorical and denoted G € G

— Default Credit Card Example: G = {"Yes", "No"}
— Medical Diagnosis Example: G = {"stroke", "heart attack”, "drug overdose", "vertigo"}

* The training data is D = {(X1,G1), (X2,G2),...,(Xn,Gn)}

* The optimal decision/classification is often based on the posterior probability Pr(G = g | X = x)

1.2 Binary Classification
* Classification is simplified when there are only 2 classes.

— Many multi-class problems can be addressed by solving a set of binary classification problems
(e.g., one-vs-rest).

* It is often convenient to transform the outcome variable to a binary {0, 1} variable:

1/;::

1 G; =G (outcome of interest)
0 Gi = G2

e In the Default data, it would be natural to set default=Yes to 1 and default=No to 0.

2 Risk Scoring vs. Classification

Most of the models we will encounter can output a predicted probability py(x) = 15\r(Y =k| X =) for
every class k € G.

Sometimes a hard classification needs to be made, i.e., decide on single label/class to assign the observation.

1. Hard Classification:
« Use training data to estimate the label G(X)
« The loss/cost L(G, G(X)) is the loss incurred by estimating G with &
2. Risk Scoring (Soft-Classification):
* Use training data to estimate the probability py(X)
* The loss/cost L(G,p(X)) is the loss incurred by estimating G with pi(X), where p(X) =
[P1(X), s prc (X)]
3. Ranking:
» Use the training data to rank the test observations according to estimated risk level.
* The loss/cost is based on the number of outcomes of interest in the top proportion of risk.

2.0.1 Example: Recidivism Prediction

Recently the National Institute of Justice hosted a Recidivism Forecasting Challenge which challenged
contestants to predict if a parolee would be arrested for another offense within the next few years. The
motivation is not to determine who should be released on parole, but rather which parolees should get
additional assistance/supervision.


https://en.wikipedia.org/wiki/Multiclass_classification
https://nij.ojp.gov/funding/recidivism-forecasting-challenge
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Objective Model Output

Classification Predict {Yes, No} for re-offending
Scoring Predict probability of re-offending
Ranking Order from highest risk level to lowest

Your Turn #1 : Recidivism Prediction

1. How could you use the probability/score to make a hard classification?

2. Do you think a hard classification or probability/score is better for this scenario?

3. If there were limited resources (e.g., only N parolees could get extra assistance), which type of
model output would be more useful?
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3 Binary Classification

3.1 Decision Theory
* We are considering binary outcomes, so the outcomes G € {0, 1}
e Letp(z) =Pr(G=1| X =x)
« Loss Function: L(True Label, Estimated Label) = L(G, G)

Loss Description Name

L(G =0,G =0) True class is 0, Predicted class is 0 True Negative
LG=1,G=1) True class is 1, Predicted class is 1 True Positive
L(G=0,G=1) True class is 0, Predicted class is 1 False Positive
L(G=1,G=0) True class is 1, Predicted class is 0 False Negative

* A model’s Expected Prediction Error (EPE) at input X is the expected loss on new data with input X.
* The EPE (for a binary outcome) is:
EPE.(g) = Egjx— | L(G,G(x) = g) | X = 2]
=L(L,g)Pr(G=1|X=2)+L(0,9)(1 -Pr(G=1| X =x))
= L(1, 9)p(z) + L(0, 9)(1 — p(z))

« Hard Decision (G(z) € {0,1}): choose G(z) = 1 if

EPE,(1) < EPE,(0)
L(1, Dp(x) + L(0,1)(1 = p(x)) < L(1,0)p(x) + L(0,0)(1 — p(x))
p(z) (L(1,1) = L(1,0)) < (1 = p(x)) (£(0,0) — L(0, 1))
p(z) (L(1,0) — L(1,1)) > (1 — p(=z)) (L(0,1) — L(0,0)) (multiply both sides by -1)
)— L
)

In most cases, there will be no loss/cost for making a correct classification. Thus it is convention to set
L(0,0) = L(1,1) = 0 in these scenarios.

3.1.1 Example: Cancer Diagnosis
» Say we have a goal of estimating if a patient has cancer using medical imaging
— Let G = 1 for cancer and G = 0 for no cancer
* Suppose we have solicited a loss function with the following values

- L(G=0, G= 0) = 0: There is no loss for correctly diagnosis a patient without cancer.
- L(G =1,G = 1) = 0: There is no loss (for our model) for correctly diagnosis a patient with
cancer.
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- L(G =0, G = 1) = Cpp: There is a cost of Cpp units if the model issues a false positive,
estimating the patient has cancer when they don’t.

- L(G =1, G = 0) = Cpn: There is a cost of Cpy units if the model issues a false negative,
estimating the patient does not have cancer when they really do.

— In these scenarios Cry is often much larger than Crp (Crn >> Cpp) because the the effects of
not promptly treating (or further testing, etc) a patient is more severe than starting a treatment
path for patients that don’t actually have cancer.

* The optimal decision is to issue a positive indication for cancer if EPE; (1) < EPE;(0). This occurs
when

p(x) Crp Crp ( p(x) ) (CFP>
> OR >———_ OR 1 — ] >1 —_—
1—p(x) = Cpn p(z) = Crp + Crn e\1- p(x)) — o8 CrN

* The ratio of Crp to Cry is all that matters for the decision. Let’s say that Crp = 1 and Crn = 10.
Then if p(x) > 1/11, our model will diagnose cancer.

- Note: p(z) = Pr(Y = 1|X = z) is affected by the class prior Pr(Y = 1) (e.g., the portion of
the population tested who have cancer), which is usually going to be small.

3.1.2 Optimal Threshold

Recall, the optimal hard classification decision is to choose G =1if:

px) _ L(0,1) - L(0,0)
L—p(z) = L(1,0)— L(1, 1)

It can be convenient to use model output other than p(z)/(1 — p(z)) to make decisions

Some models directly output p(z)

Other models, like logistic regression, naturally work with the link function (linear part)

— Denote ~(x) as the logit of p(z):

p(z)
z) =1lo
7(z) =log @)
eY(@)
p(CL’) = 1+ @)

* Table of equivalent representations:
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Score Threshold Threshold (simplified)
p(z) L(0,1) — L(0,0) Crp
1 —p(x) L(1,0) = L(1,1) Crn
p(x) (L(O, 1) - (0, o>) (Cev)
=1 1 1 —_—
Y= ) *\Z 0~z ¢ G
L(0,1) — L(0,0) Crp
p(x) log
L(0,1) = L(0,0) + L(1,0) — L(1,1) ) Crp + Crx
The Threshold (simplified) assumes L(0,0) = L(1,1) =0
3.1.3 Using estimated values
* We will never have the actual p(x) or v(x), so replace them with the estimated values.
« For a given threshold ¢ and input z, the hard classification rule is Gy (z) = 1(p(x) > t) (or Gy(z) = 1(5(x) > t)
if using 4 instead of p).

Because we have to estimate p(z) or 4(x), the best threshold ¢* may differ from the theoretical optimal and need
to be estimated. (more info about this below)

3.2 Common Binary Loss Functions

« Setting: estimate a binary outcome G € {0, 1} with a predicted label G(z)
* Mis-Classification Cost

Crp G=0,G(z)=1
0 otherwise

— This requires that a hard classification is made.
— The theoretically optimal prediction is:

G*(z) = 1(p(x) > Crp/(Crp + Crn))
¢ (-1 Loss or Misclassification Error

L(G, G(x)) = 1y £ G(x)) = {(1’ o GEZ

— This assumes L(0, 1) = L(1,0) (i.e., false positive costs the same as a false negative)
— This requires that a hard classification is made.

— The theoretically optimal prediction is:

G*(x)

1(p(z) > 1 - p(z))
1(p(z) > 0.50)
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3.3 Performance Metrics

3.3.1 Confusion Matrix

* Given a threshold ¢, we can make a confusion matrix to help analyze our model’s performance on data
- Data = {(X;,G;)}Y, (ideally this is hold-out/test data)
— N}, is number of observations from class & (Ng + N1 = N)

Model Outcome
G =1 G,=0 total

True False

G=1 Positive Negative | N;
(TP) (FN)

True
Outcome

False True

G=0 Positive Negative | N,
(FP) (TN)

total  Ny(¢) No(t) N

Table from: https://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex

To illustrate a confusion table in practice let’s go back to the Default data and see how the basic logistic regression
models performs.

¢ In order to evaluate on hold-out data, split the data into train/test (used 8000 training, 2000 testing), fit a logistic
regression model on training data, and make predictions on the test data

* Note that only 3.3% of the data is default.

— Using a threshold of p(z) > 0.10 to make a hard classification.
- Equivalent to 4(x) > log(.10) — log(1 — .10) = —2.1972

#: train/test split

set.seed (2019)

test.ind = sample (nrow (Default), size=2000)
train.ind = —-test.ind

#: fit model on training data
fit_lm = glm(y~student + balance + income, family='binomial',
data=Default[train.ind, ])

#: Get predictions (of p(x)) on test data
p_hat = predict (fit_1m, Default[test.ind, ], type='response')

#: Make Hard classification (use .10 as cut-off)
G_hat = ifelse(p_hat >= .10, 1, 0)

#: Make Confusion Table
G_test = Default$y[test.ind] # true values

table (truth = G_test, predicted = G_hat) %>% addmargins()
#> predicted

#> truth 0 1 Sum

#> 0 1805 128 1933


https://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex
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#> 1 17 50 67
#> Sum 1822 178 2000

3.3.2 Maetrics

There are several standard evaluation metrics that can be calculated from the confusion matrix:

Metric Definition Estimate
11 . 1 A
Expected Cost L(1,))Px(G(X)=14,G¢(X) =7) — Y L(G;,Gi(x;
p 223 L) PO =4, GUX) =)y 3 LG Gule)
Pxa(Gi(X) # G(X)) = )
Mis-classification Rate Px(Gi(X) =0,G(X) = 1)+ N 1(Ge(xi) # Gy)
Px(Gy(X) =1,G(X) =0) =
False Positive Rate (FPR) A A

{1-Specificity}

True Positive Rate (TPR)
{Hit Rate, Recall, Sensitivity}

Precision A 1
TP/(TP + FP)

N is the total number of predictions/observations, Ny is the number of true class 0’s in the data (Ng = Z;] 1(y; = 0)),
N7 is the number of true class 1’s in the data (N7 = Z;\:l 1(y; = 1)), N (t) is the number of *predicted* class 1’s
using a threshold of ¢ (V; (t) = Yo 1(pi > t).

¢ Note: Performance estimates are best carried out on hold-out data!

* See Wikipedia Page: Confusion Matrix for more metrics:


https://en.wikipedia.org/wiki/Confusion_matrix
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Predicted condition Sources: [13][14][15][16][17][1B][19][20] view - talk - edit
Total Informedness, bookmaker Prevalence threshold
population Positive (PP) Negative (PN) informedness (BM) (PT)
— — _ ¥TPRxFPR — FPR
=P+N =TPR + TNR — 1 = L
True positive rate (TPR), )
False negative o False negative rate
c g recall, sensitivity (SEN),
o . True positive (TP), {FN), - ) ] [FNR),
= | Positive (P) probability of detection, hit rate, _
= hit type Il error, miss, Dower miss rate
g underestimation P = % =1-TPR
2 =T =1-FNR
m
H False positive (FP), True negative False positive rate (FPR), True negative rate (TNR),
é Negative (N) type | error, false alarm, (TN), probability of false alamm, fall-out specificity (SPC), selectivity
overestimation correct rejection = ﬁq—P =1-—TNR = % =1-FPR
Positive predictive value (PPV), | False omission rate . - . Negative likelihood ratio
Prevalence Positive likelihood ratio (LR+)
P precision (FOR) TPR (LR—)
R = IP _ — EN _ = FPR — ENR
+ =5 =1—FDR =N =1-NPV =0k
Accuracy . Negative predictive ) . .
False discovery rate (FDR} ™ Markedness (MK), deltaP (Ap) Diagnostic odds ratio
(ACC) P value (NPV) = gy LR+
TP 4+ TN =5 =1- PPV = PPV + NPV - 1 (DOR) =
—Te+IN =1 - FOR
Matthews correlation Threat score (TS), critical
Balanced Fowlkes-Mallows . .
F; score ) coefficient (MCC) success index (CSl),
accuracy (BA) _ 2PPYXTPR _ TP index (FM) L m— d ind
_ TPR E TNR = PPV T+ TPR — ZTP T FP ¥ FN — VPPVXTPR = VTPRXTNRxPPVxNPY — Jaccan T::n ex
/ - 1P
VFNRxFPRxFORxFDR =P TENTFP

F1 Metric

The F1 metric is the harmonic mean of precision and recall/TPR. It was first used in the context of information
retrieval where there are often a massive number of irrelevant cases (negatives). In this setting, the actual number
of true negatives isn’t that important and the F1 metric, which doesn’t consider the number of true negatives,
became popular.

(1/precision + 1/recall> -
F =
2
2TP
2TP + FN + FP
* But even in this setting, why not use cost? You see that here false positives and false negatives show as
equally important in the denominator. Wouldn’t it be better to use Score = FP x Cgp + FN X Cgn?

* More reasons to avoide F1 (and Accuracy) are provided in Common Problems With the Usage of F-
Measure and Accuracy Metrics in Medical Research.

* Finally, what does F1 actually try to estimate? Using the definitions precision = Px(G(X) =1 |
Gy(X) =1)andrecall = Px (G¢(X)=1|G(X) =1)

( 1/precision + 1/ recall) -
F = 5
_ 2
Px(G(X) =1] Gy(X) =1)"1 + Px(G4(X) =1) | G(X) = 1)1
2
__ Px(GuX)=1) Px (G(X)=1
Px(G(X)=1,C,()=1) T Px(G(X)=1,02(X)=1)
_ 2Pk (G(X) =1,Gi(X) = 1)
Px(G¢(X) =1)+ Px(G(X) =1)



https://ieeexplore.ieee.org/abstract/document/10130551
https://ieeexplore.ieee.org/abstract/document/10130551
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3.4 Performance over a range of thresholds

In the previous example, a hard classification was made using a threshold of p(z) > 0.10. But performance
varies as we adjust the threshold. Let’s explore!

I'll use /() instead of p(x) for this illustration because it better separates the classes.

#: Get predictions (of gamma (x)) on test data
gamma_hat = predict (fit_1m, Default[test.ind,], type='link')
p_hat = predict (fit_1m, Default[test.ind,], type='response')

* The model is unable to perfectly discriminate between groups, but the defaults do get scored higher in
general:
— As areference point, note that y(z) =0 - Pr(Y =1 | X =z) =1/2
- y(@) =logp(x)/(1 - p(x))

probability
le-05  1le-04  1e-03  le-02 le-01 5e-01  9e-01

0.20 1

0.15 1

2 default
i

$ 0.10- B ~o
© [:] Yes
0.05-

0.00 1

11 SANE (0 11|
-12 -10 -8 -6 -4 -2 0

gamma

* We can calculate performance over a range of thresholds:

# truth: {0,1} vector
# score: risk score with larger values correspond to label = 1.
# thres: vector of thresholds at which to calculate metric.
# Note: decision is 1 if score > thres, 0 if score <= thres.
perf_table <- function (truth, score, thres=NULL) {
if (is.null (thres)) thres = seq(min(score, max(score), length=1000))
x = c(-Inf, thres, Inf) %>% unique () %>% sort() # expand and clean thresholds

tibble (truth, score) %>%

# create groups by threshold

mutate (
bin = findInterval (score, x, left.open = TRUE),
val = x[bin+1]

) %$>%

# counts by group/threshold

group_by (val) %>%
summarize(n = n(), n.l1 = sum(truth), n.0 = n-n.1l) %>%

ungroup () %>%

# add zero counts
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complete (val = thres,
# calculate metrics
arrange (val) %>%
mutate (
TN = cumsum(n.0),
FN = cumsum(n.1),
TP sum(n.1l) - FN,
FP sum(n.0) - TN,
TPR = TP/sum(n.1),
FPR = FP/sum(n.0)

) %>%

fill = list (n=0L, n.1=0L, n.0 = 0OL)) %>%

True negatives
False negatives
True positives
False positives
True positive rate (TP / Positives)

#
#
#
#
#
# False positive rate (FP / Negatives)

# drop values outside of stated thresholds

filter (val %in% thres)

>%

# retain relevant metrics
select (-n, -n.l, -n.0, score = wval)

}

thresholds = seq(0, 1, length = 1000)
perf = perf table(truth = G_test, score = p_hat, thres = thresholds) %>%
mutate (p_hat = score, gamma_hat = log(p_hat) - log(l-p_hat), .before=1l) %>%

select (—score)

Here is a selection from the perf table

p_hat

gamma_hat TN FN TP FP TPR FPR

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

-4.594 1408 1 66 525 0985 0.272
-3.891 1562 3 64 371 0955 0.192
-3.475 1639 5 62 294 0925 0.152
-3.177 1688 9 58 245 0.866 0.127
-2.943 1721 11 56 212 0.836 0.110
-2750 1743 14 53 190 0.791 0.098
-2.586 1769 14 53 164 0.791 0.085
-2441 1779 16 51 154 0.761 0.080
-2.313 1792 16 51 141 0.761 0.073

* Note: the perf object is only based on the rank order of the predictions. This means that the same
results would be obtained if we used 4(z) or p(x) to do the ranking.
— This is because there is a one-to-one monotone relationship between 4(z) and p(z).
— The perf object grouped by both gamma_hat and p_hat so both thresholds are available.
But we can switch back and forth from the relationship log(p/(1 — p)) = 7, so its easy to switch
between the two depending on what is most convienient.

3.4.1 Cost Curves

¢ Under the usual scenario where L(0,0) = L(1,1) = 0, the cost only depends on the ratio of false
positive costs (Crp) to false negative costs (Crn).

* note: the purple is the theoretical optimal threshold (using t* = log Crp/Cpn for 4(x) and
Crp/(Crp 4 Cpn) for p(x)) and the orange point is at the optimal value for the test data.
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Cost of FP = 1; Cost of FN=10 Cost of FP = 10; Cost of FN=1
2000 20000

15000
1500

cost
cost
1
)
1S]
S
S

1000

500 /\’/_/__/_/—/_//

00 02

5000

0.4 06 08 10 00 02 0.4 06 038 10
threshold (p_hat) threshold (p_hat)

Optimal Threshold

* The theoretically optimal threshold is based on the true v(z) = log £ (pz()x) (for a given cost ratio of FP to
FN)

¢ The observed optimal threshold will differ when the model’s estimate §(x) # ~(z)

— Hopefully, they are close and it won’t make much difference which one you use. But I'd take the
estimated threshold if I had sufficient data.

* Note that the estimated values depend on the prior class probabilities. If you suspect these may differ in
the future, then you should adjust the threshold.
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3.4.2 General Performance as function of threshold (select metrics)
T MO 1 2000 LI ULLULLIL L L LU I
601
1500
o 407 metric metric
§ EN § 1000 FN
© — 1 ° FP
201
500
0 0
|1 Dl 0 | 1] (gl ) |
% 6 -4 2 o 3 4 % % 6 -4 2 o0 3 & &
threshold (gamma) threshold (gamma)
LLLLLLOL L LR L UL I U I I N I 2000 IO T AT T T o 1 T 0 T mr 1 T 11 11
60
1500
o 401 metric metric
§ FN § 1000 FN
© — 1 ° FP
204
500
04 0
M [T T 1 : : M T T 11 : :
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
threshold (p_hat) threshold (p_hat)
3.4.3 ROC Curves (Receiver Operating Characteristic)
LLLLILU L LILE R LU U1 I I Y BN I T MW |
1.0 1.0
0.8 0.8
067 metric 0.6 metric
Q Q
B — TPR§ — TPR
FPR FPR
0.4 0.4
0.2 0.2
0.0 0.0
. LTI TR T T Ik ' ' - T ' '
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -8 -6 -4 -2 0 2 4 6

threshold (gamma)
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AUROC

» The area under the ROC curve (AUROC or AUC) is a popular performance metric

ROC Curve
1.0 *thres = 0.01
08 thres = 0.05
>
=061
2
) thres = 0.25
23
O 0.4
a
|_
0.2
0.01
' 0.2 04 06 0.8 1.0

0.0

FPR (1-specificity)

e I don’t think it is a great way to compare classifiers for several reasons

— The main reason is that in a real application you can almost always come up with an estimated

cost/loss for the different decisions

— To say it another way, comparisons should be made at a single point on the curve; the entire FPR

region should not factor into the comparison.

* The AUROC is equal to the probability that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one.
— AUROC is proportional to the Mann-Whitney U statistic

3.4.4 Precision Recall Curves

score

* Popular for information retrieval/ranking
* The precision metric is not monotonic wrt threshold, hence the sawteeth pattern.

1.0

0.8

0.6

0.4

0.2

0.0

LLLLLCILLL LR LU I 0L L O O S T MU 1 1
1.0
0.8-
metric o 061 metric
— precision§ — precision
— 1R ° — TPR
0.4
0.2
0.0
- T T | I : i T T
0.0 0.2 0 0.8 1.0 -12 -100 -8 -6 -4 -2 0 2 4 6
threshold (gamma)

4 0.6
threshold (p_hat)


https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#area-under-curve
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3.45 R Code

Precision—Recall Curve

0.8

Precision
o
>

=}
~

0.2

0.0

0.0 02 04 0.6

Recall (TPR)

Once we have the FP, TP, TN, FN values for a set of thresholds (like what is in the per f object), then we

have everything we need to calculate any metric (e.g., gain, lift, F1,...).

#:
#

* But I will mention the yardstick R package which offers some functionality you may find conve-

nient

* List of the metrics included in the yardst ick package

* The roc_curve () function will generate the hard classification metrics for a range of thresholds.

The yardstick package requires the categorical outcome be

— [-specificity is the False Positive Rate (FPR) and sensitivity is the True Positive Rate (TPR).
library (yardstick)

# for evaluation functions

a factor with 1st level the outcome of interest.

test_perf =
tibble (

truth = Default$y[test.ind]

gamma_hat

#: ROC plots

ROC
test_perf %>%
yardstick: :roc_curve (truth, gamma_hat)

ROC

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

%$>% factor (levels=c(1,0)),

<dbl>

I R A L

# A tibble: 2,002 x 3
.threshold specificity sensitivity

<dbl> <dbl>

1 —Inf 0

2 =11.5 0

3 -11.5 0.000517

4 =11.5 0.00103

5 =11,5 0.00155

6 -11.5 0.00207

# 1 1,996 more rows

autoplot (ROC)

# autoplot () method


https://yardstick.tidymodels.org/reference/index.html

Classification DS 6030 | Fall 2024

16/29

1.00+

0.754

0.501

sensitivity

0.254

0.004 .

0.00 0.25 0.50 0.75 1.00
1 - specificity
# manual ROC plot (same as autoplot())
ROC %>%
ggplot (aes (1-specificity, sensitivity)) + geom_line() +
geom_abline (1ty=3) +
coord_equal ()

1.001

0.751
2
=
2 0.501
c
(]
7]

0.251

0.004 .}

0.00 0.25 0.50 0.75 1.00
1 - specificity

The yardstick package also has an AUC function roc_auc () :
#: Area under ROC (AUROC)
test_perf %$>%
roc_auc (truth, gamma_hat)
#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 roc_auc binary 0.951



Classification DS 6030 | Fall 2024 17/29

3.5 More than two classes

Nothing really changes when there are more than two classes; we still want to choose the (hard) label that has
minimum EPE:

EPE.(9) = Eg|x=x [L(G,G’(x) =g)| X = x}
=Y L(G=kG=9g)Pr(G=k|X =2x)
k

G*(z) = arg max EPE,(g)

g
:argmaxZL(G: k,G=g)Pr(G=Fk|X =ux)
g k

3.6 Summary of Classification Evaluation

Decision Theory

A prediction is not a decision!

* Ask yourself: do I really need to make a hard classification? Or are risk scores/probabilities better for
end user (who is in charge of making the decisions)?

* Use cost! The other metrics are probably not going to give you what you really want.

— Resist the pressure to use AUROC, Accuracy, F1.
— If you don’t know cost(FP)/cost(FN) ratio, then report performance for a reasonable range of
values.

« For Binary Classification Problems, the optimal decision is to choose G (x) =1if

p) _ L(0,1) — L(0,0)
1—p(z) = L(1,0) — L(1,1)
_ FP-TN
~ FN-TP

* Consider the connection to Decision Theory, make the decision that maximizes expected utility. The
losses define the utility.

* In practice, we need to use an estimated p(z) or 4(x) and estimated threshold.
* Model parameters are usually estimated with a different metric than what’s used for evaluation.

- E.g., Estimate logistic regression parameters by minimizing Log-loss (i.e., maximum likelihood)
— E.g., Hinge Loss for Support Vector Machines (SVM)

But Total Cost, MAE, F1, AUROC are used for evaluation (and tuning parameter estimation).
Reason: its difficult to estimate model parameters with such loss functions (e.g., non-differentiable,
non-unique, etc.)
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4 Appendix: R Code

Set-up

#: Load Required Packages
library (ISLR)

library (glmnet)

library (yardstick)
library (tidyverse)

#: Default Data
# From the ISLR package
# The outcome variable is ‘default’

library (ISLR)
data (Default, package="ISLR") # load the Default Data

#: Create binary column (y)

Default = Default |> mutate(y = ifelse (default == "Yes", 1L, 0L))

#: Summary Stats (Notice only 333 (3.3%) have defaulted)
summary (Default)

#> default student balance income

#> No :9667 No :7056 Min. : 0 Min. : 772 Min.

#> Yes: 333 Yes:2944 1st Qu.: 482 Ist Qu.:21340 1st Qu.:
#> Median : 824 Median :34553 Median
#> Mean : 835 Mean :33517 Mean

#> 3rd Qu.:1166 3rd Qu.:43808 3rd Qu.:
#> Max. :2654 Max. : 73554 Max.

#: Train/Test Split
library (rsample)
set.seed (2024)
Default_split =
initial_split (

Default,
prop = 1 - 500/nrow(Default), # n_test = 500
strata = y # stratify on outcome

Penalized Logistic Regression

First need to convert data to numeric model matrix

#: using the recipe/bake method
library (tidymodels)

rec_fit = recipe(y~student + balance + income,
data = training(Default_split)) |>
step_dummy (all_nominal (), one_hot = TRUE) |[>
prep ()

#: training data
X.train = rec_fit |[|>
bake (
all predictors(),
new_data = training(Default_split),
composition="matrix"

h O O O O O

.0000
.0000
.0000
.0333
.0000
.0000
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Y.train = training(Default_split) Sy

#: testing data
X.test = rec_fit |>
bake (
all predictors(),
new_data = testing(Default_split),
composition="matrix"
)
Y.test = testing(Default_split) Sy

Now fit the elastic net

#: Elastic net with alpha = .5.
library (glmnet)
set.seed (2020)
fit_enet =
cv.glmnet (X.train,
alpha=.5,
family="binomial")

Use CV to select lambda.
# seed controls the cross-validation splits

Y.train,

#: CV performance plot

plot (fit_enet, las=1)
4 4 4 4 4 4 4 4 4 4 3 1 1 1 1 1 1 1
0.30 —
[ ]
®
[ ]
(O] : [ )
2 : : *
8 025 1 : : o)
3 : : 3
[a)] ‘0
< of
S § é oo
S 020 - : ot
o N N ()
o : ,c"
T '.0"
000"?"
0.15 — :
I I I I I I I
-8 -7 -6 -5 -4 -3 -2
Log(A)
Performance Metrics and Curves
perf_data =
testing (Default_split) |[>
mutate (
# p_hat (x)
p_hat = predict (fit_enet, X.test, s = "lambda.min", type = "response")[,1],
# gamma_hat (x) = log(p) - log(l-p)
gamma_hat = predict (fit_enet, X.test, s = "lambda.min", type = "link")[,1],

# Make Hard classification (use .10 as cut-off)
G_hat = ifelse(p_hat >= .10, 1, 0)

) 1>

as_tibble ()
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#: Make Confusion Table (yardstick)
library (yardstick)
# Note: the yardstick package functions, like conf_mat (), requires that hard

# classifications have xfactorx* inputs (instead of xcharacterx)
cm = perf_data |>
mutate (
y = factor(y, levels=c("1", "0")),
G_hat = factor (G_hat, levels=c("1", "0"))
) %>%
conf_mat (truth = y, estimate = G_hat)
cm
#> Truth
#> Prediction 1 0
#> 1 13 33
#> 0 7 447
autoplot (cm, type = "heatmap")
11 13 33
5
8
3
o

04 7
1 0
Truth
#: Visualize Performance by score
perf_data |>
ggplot (aes (gamma_hat, fill=default)) +
geom_density (alpha=.70) + # add kernel density estimates
geom_rug (data=. %>% filter (default == 'Yes'), # add rug to top
aes (color=default), sides='t') +
geom_rug (data=. %>% filter (default == 'No'), # add rug to bottom
aes (color=default), sides='b') +
scale_fill manual (values=c (Yes="orange", No="blue")) + # modify fill colors

scale_color manual (values=c(Yes="orange", No="blue"), guide="none") # modify colors
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T T 1T T 1 1T
0.20 1
0.154
= default
W
ko] 010' D Yes
0.054
0.00 1
-12 -8 -4 0
gamma_hat
#: Get performance data (by threshold)
# This table has one row for every threshold. The columns are the elements
# of the confusion table plus FPR, TPR
perf_table =

perf_data |>
#— group_by () + summarize() in case of ties

group_by (gamma_hat, p_hat) | >
summarize (
n =n(),
n.l = sum(y),

n.0 = n-sum(y)
) 1>
ungroup () |>
#- calculate metrics
arrange (gamma_hat) %>%
mutate (
FN = cumsum(n.1), # false negatives
TN = cumsum(n.0), # true negatives
TP sum(n.1l) - FN, # true positives
#
#

FP = sum(n.0) - TN, false positives
N = cumsum(n), number of cases predicted to be 1
TPR = TP/sum(n.l), FPR = FP/sum(n.0)

) %>%

#- only keep relevant metrics

select (-n, -n.l, -n.0, gamma_hat, p_hat)

## Note: gamma = log(p_hat) - log(l-p _hat) = log(p_hat / (1-p_hat))

perf_table |>

head (10)
#> # A tibble: 10 x 9
#> gamma_hat p_hat FN TN TP FP N TPR FPR
#> <dbl> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl>
#> 1 -11.4 0.0000108 0 1 20 479 1 1 0.998
#> 2 -11.4 0.0000108 0 2 20 478 2 1 0.996

#> 3 -11.4 0.0000108 0 3 20 477 3 1 0.994
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#> 4 -11.4 0.0000111 0 4 20 476 4 1 0.992
#> 5 -11.4 0.0000111 0 5 20 475 5 1 0.990
#> 6 -11.4 0.0000111 0 6 20 474 6 1 0.988
#> # 1 4 more rows
## Alternatively, using yardstick::roc_curve ()
perf_data |>

mutate (

y = factor(y, levels = c¢(1,0)),

) 1>

roc_curve (y, p_hat)
#> # A tibble: 502 x 3
#> .threshold specificity sensitivity
#> <dbl> <dbl> <dbl>
#> 1 —-Inf 0 1
#> 2 0.0000108 0 1
#> 3 0.0000108 0.00208 1
#> 4 0.0000108 0.00417 1
#> 5 0.0000111 0.00625 1
#> 6 0.0000111 0.00833 1
#> # 1 496 more rows
#: Make performance curves
col_lines = ¢ (TP = "blue", FP="orange", FN="green", TN="brown",

TPR = "blue", FPR="orange", FNR="green", TNR="brown")

#: Make performance curves

e

re

pe

e

rf table %>%

select (threshold = gamma_hat, FN, TP) %>%
gather (metric, n, —-threshold) %>%
ggplot (aes (threshold, n, color=metric)) +
labs (x= "threshold (gamma)", y="count") +
scale_color manual (values=col_lines)

rf_table %>%

select (threshold = gamma_hat, FN, FP) %>%
gather (metric, n, —-threshold) %>%
ggplot (aes (threshold, n, color=metric)) +
labs (x= "threshold (gamma)", y="count")
scale_color manual (values=col_lines)

+

rf_table %>%

select (threshold = p_hat, FN, TP) %>%
gather (metric, n, —-threshold) %>%
ggplot (aes (threshold, n, color=metric))
labs (x= "threshold (p_hat)", y="count") +
scale_color_manual (values=col_lines)

+

rf_table %>%

select (threshold = p_hat, FN, FP) %>%
gather (metric, n, —-threshold) %>%
ggplot (aes (threshold, n, color=metric))
labs (x= "threshold (p_hat)", y="count") +
scale_color manual (values=col_lines)

+

geom_line ()

geom_line ()

geom_line ()

geom_line ()
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204
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- metric
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threshold (p_hat)
500
400
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metric
—
S
3 — FN
200 FP
100
o4 —
0.0 0.2 0.4 0.6 0.8
threshold (p_hat)
#: Make Cost curves
perf_table %>%
mutate (cost = 1*FP + 10%FN) %>% # use 1:10 costs
ggplot (aes (p_hat, cost)) + geom line() +
geom_point (data=. %>% filter (cost==min(cost)), size=3, color='orange') + # # optimal from test dat.
geom_vline (xintercept = 1/11, color='purple') + # theoretical optimal

ggtitle('Cost of FP 1; Cost of FN=10"') +
labs (x="threshold (p_hat)")

perf_table %>%
mutate (cost = 10%FP + 1%FN) %>% # use 10:1 costs
ggplot (aes (p_hat, cost)) + geom_line () +
geom_point (data=. %>% filter (cost==min(cost)), size=3, color='orange') + # optimal from test data
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geom_vline (xintercept = 10/11, color='purple') + # theoretical optimal
ggtitle('Cost of FP = 10; Cost of FN=1'") + labs (x="threshold (p_hat)")

Cost of FP = 1; Cost of FN=10

400

300 A

cost

200 -

100 1 f\

0.0 0.2 0.4 0.6 0.8
threshold (p_hat)
Cost of FP = 10; Cost of FN=1

5000

4000 1

3000 1

cost

2000 1

1000 1

0.00 0.25 0.50 0.75
threshold (p_hat)

#: Make ROC curve
perf_table %>%
ggplot (aes (FPR, TPR)) +
geom_path () +
labs (x='FPR (l-specificity)', y='TPR (sensitivity)') +
geom_segment (x=0, xend=1, y=0, yend=1l, 1lty=3, color='grey50') +
scale_x continuous (breaks = seq(0, 1, by=.20)) +
scale_y continuous (breaks = seq(0, 1, by=.20)) +
ggtitle ("ROC Curve")
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## Using yardstick package

library (yardstick) # for evaluation functions

# Notes:

# — for ROC curve and AUROC, it doesn't matter if the estimates/predictions
# are p_hat or gamma_hat

# — for

#: ROC plots

ROC =
perf_data %>%
mutate (y = factor(y, levels=c(1,0))) %>%

yardstick: :roc_curve (y, gamma_hat)
autoplot (ROC) # autoplot () method

ROC |> # same as autoplot ()
ggplot (aes (1-specificity, sensitivity)) + geom_line() +
geom_abline (1ty=3) +
coord_equal ()

#: Area under ROC (AUROC)

perf_data |>
mutate (y = factor(y, levels=c(1,0))) |>
roc_auc (y, gamma_hat)

#> # A tibble: 1 x 3

#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 roc_auc binary 0.937

yardstick: :roc_auc_vec (factor (perf_dataSy, 1:0), perf_data$gamma_hat)
#> [1] 0.9368

ROC Curve
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0.0 0.2 0.4 0.6 0.8 1.0
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#: Log Loss Metric

perf_data |>
mutate (y = factor(y, levels=c(1,0))) |>
mn_log_loss(y, p_hat)

#> # A tibble: 1 x 3

#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mn_log_loss binary 0.104

#: Precision-Recall

perf_table %>%
mutate (threshold = p_hat, precision = TP/ (TP + FP))
select (threshold, TPR, precision) %>%
gather (metric, n, —-threshold) %>%

%>

ggplot (aes (threshold, n, color=metric)) + geom_line ()

scale_x_continuous (breaks = seq(0, 1, by=.20)) +
scale_y continuous (breaks seq(0, 1, by=.20)) +
scale_color_manual (values
labs (x="thredhold (p_hat)", y="score")

%

+

c (TPR="blue", precision="brown"))

+

#> Warning: Removed 1 row containing missing values or values outside the scale range

#> ("geom_line() ") .

perf_table %>%

mutate (threshold=p_hat, precision = TP/ (TP + FP)) %>%

ggplot (aes (TPR, precision)) + geom_line() +

scale_x continuous (breaks = seq(0, 1, by=.20)) +

scale_y continuous (breaks = seq(0, 1, by=.20)) +

labs (x='Recall (TPR)', y='Precision', # (TP/(TP+FP))
title="Precision—-Recall Curve")

#> Warning: Removed 1 row containing missing values or values outside the scale range

#> (‘geom_line () ).
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0.2 1
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Precision—Recall Curve
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