Class | Date | Day | Topic | Reading (Pre-Class) | Notes |
---|---|---|---|---|---|
1 | Aug 27 | Tue | Introduction | Pre-Req material; R and Rstudio Modern Data Science with R sections: 2,3,4,6,7,9 |
HW 0 assigned; Download textbooks; update software; review pre-req material |
2 | Aug 29 | Thu | R and Tidyverse | R Tidyverse 2-12,
19, 26-27, 29 ISL 3.1-3.6 |
R formula interface; Linear Regression with R |
3 | Sep 03 | Tue | Supervised Learning I | ISL 1, 2.1, 7.1 ESL 1, 2.1-2.4 |
HW 0 Due |
4 | Sep 05 | Thu | Supervised Learning II | ISL 2.2-2.3 ESL 2.5-2.9 |
|
5 | Sep 10 | Tue | Resampling: Bootstrap and Splines | ISL 5.2, 7.2-7.4 ESL 7.11, 5.1-5.3 (optional) Bootstrapping Regression Models |
HW 1 Due |
6 | Sep 12 | Thu | Resampling: Cross-Validation and Model Selection | ISL 5.1 ESL 7.10 ISL Chap 3 (review) |
|
7 | Sep 17 | Tue | Penalized Regression | ISL 6.1-6.2 ESL 3.3-3.4 |
HW 2 Due |
8 | Sep 19 | Thu | Penalized Regression | ISL 6.4-6.5 (optional 6.3) ESL 3.5-3.6 |
|
9 | Sep 24 | Tue | Tree-Based Methods | ISL 8.1, 8.3.1-8.3.2 ESL 9.2 |
HW 3 Due |
10 | Sep 26 | Thu | Tree-Based Methods | ISL 8.2, 8.3.3-8.3.4 ESL 15 |
|
11 | Oct 01 | Tue | Classification: Probability Modeling | ISL 4.1-4.3 ESL 4.1-4.4 |
HW 4 Due |
12 | Oct 03 | Thu | Classification: Decision Theory | ESL 9.1 | |
13 | Oct 08 | Tue | Support Vector Machines (SVM) | ISL 9.1-9.6 ESL 12.1-12.3 or MMDS 12.3 |
HW 5 Due |
14 | Oct 10 | Thu | Prediction Bias and Calibration | Calibration: the Achilles heel of predictive analytics | |
Oct 15 | Tue | No Class | |||
15 | Oct 17 | Thu | Review #1 | HW 6 Due (Oct 18) | |
16 | Oct 22 | Tue | Ensembles and Stacking | ISL 8.2 | |
17 | Oct 24 | Thu | Boosting | ISL 8.2.3; ESL 10.1-10.9 LogitBoost paper |
|
18 | Oct 29 | Tue | Boosting | ESL 10.10-10.14 XGBoost, CatBoost, LightGBM |
HW 7 Due Taylor Expansion |
19 | Oct 31 | Thu | GAM and Stumps | Generalized Additive Models (GAM) | |
Nov 05 | Tue | No Class | |||
20 | Nov 07 | Thu | Feature Importance and XAI | Interpretable Machine Learning: Permutation Feature Importance | HW 8 Due (Nov 8) |
21 | Nov 12 | Tue | Feature Engineering | ISLR 6.3 | |
22 | Nov 14 | Thu | Density Estimation | IPSUR:
pg. 209-218 (MLE intro) Maximum Likelihood Estimation: pg. 221-223 IPSUR Chap. 5-7 (Random Variable Review, if necessary) |
HW 9 Due |
23 | Nov 19 | Tue | Density/Probability Estimation | Silverman 2.1-2.6 | |
24 | Nov 21 | Thu | Generative Classifiers | ISL 4.4-4.5; ESL 6.6 | |
25 | Nov 26 | Tue | No Class | HW 10 Due | |
Nov 28 | Thu | No Class | |||
26 | Dec 03 | Tue | Clustering 1 | Primary: ISL 12.4-12.5; ITDM 7.1; 7.5 Secondary: ESL 14.3.1-14.3.8; 14.3.12; ITDM 7.2-7.3 |
|
27 | Dec 05 | Thu | Clustering 2 | Primary: ESL 8.5.1 Secondary: Gaussian Mixture Models: 11.1-11.3 |
|
Dec 12 | Thu | (8am) Final Exam Due |